2,174 research outputs found

    Generalized top-spin analysis and new physics in e+ee^{+} e^{-} collisions with beam polarization

    Full text link
    A generalized top-spin analysis proposed some time ago in the context of Standard Model and subsequently studied in varying contexts is now applied primarily to the case of e+ettˉe^+e^-\rightarrow t\bar{t} with transversely polarized beams. This extends our recent work with new physics couplings of scalar (SS) and tensor (TT) types. We carry out a comprehensive analysis assuming only the electron beam to be transversely polarized, which is sufficient to probe these interactions, and also eliminates any azimuthal angular dependence due to standard model or new physics of vector (VV) and axial-vector (AA) type interactions. We then consider new physics of general four-Fermi type of VV and AA type with both beams transversely polarized and discuss implications with longitudinal polarization as well. The generalized spin bases are all investigated in the presence of either longitudinal or transverse beam polarization to look for appreciable deviation from the SM prediction in case of the new physics. 90% confidence level limits are obtained on the interactions for the generalized spin bases with realistic integrated luminosity. In order to achieve this we present a general discussion based on helicity amplitudes and derive a general transformation matrix that enables us to treat the spin basis. We find that beamline basis combined with transverse polarization provides an excellent window of opportunity both for SS, TT and VV, AA new physics, followed by the off diagonal basis. The helicity basis is shown to be the best in case of longitudinal polarization to look for new physics effectsdue to VV and AA.Comment: 21 pages using revtex4-

    Probing the indefinite CP nature of the Higgs Boson through decay distributions in the process e+ettˉΦe^+e^-\to t\bar{t}\Phi

    Full text link
    The recently discovered scalar resonance at the LHC is now almost confirmed to be a Higgs Boson, whose CP properties are yet to be established. At the ILC with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process e+ettˉΦe^+ e^- \to t \bar{t} \Phi, with Φ\Phi mainly decaying into a bbˉb\bar b pair. We have compared the case of a minimal extension of the SM case (Model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating Two-Higgs Doublet Model (Model II) that permits a more general description of the couplings. We have considered the ILC with s=800\sqrt{s}=800\,GeV and integrated luminosity of 300fb1300\, {\rm fb}^{-1}. Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in Model II, while it is difficult to probe these departures in Model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increases the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the SM.Comment: 14 pages using revtex, 10 figures, corresponds to version accepted for publication in Phys. Rev. D.; compared to v1, discussion extended, figure added, table added, section reorganize

    Invisible decays of the lightest Higgs boson in supersymmetric models

    Full text link
    We consider supersymmetric models in which the lightest Higgs scalar can decay invisibly consistent with the constraints on the 126126~GeV state discovered at the CERN LHC. We consider the invisible decay in the minimal supersymmetric standard model~(MSSM), as well its extension containing an additional chiral singlet superfield, the so-called next-to-minimal or nonminimal supersymmetric standard model~(NMSSM).We consider the case of MSSM with both universal as well as nonuniversal gaugino masses at the grand unified scale, and find that only an E6E_6 grand unified model with unnaturally large representation can give rise to sufficiently light neutralinos which can possibly lead to the invisible decay h0χ~10χ~10h^0 \rightarrow \tilde \chi_1^0 \tilde \chi_1^0. Following this, we consider the case of NMSSM in detail, where also we find that it is not possible to have the invisible decay of the lightest Higgs scalar with universal gaugino masses at the grand unified scale. We delineate the regions of the NMSSM parameter space where it is possible to have the lightest Higgs boson to have a mass of about 126126 GeV, and then concentrate on the region where this Higgs can decay into light neutralinos, with the soft gaugino masses M1M_1 and M2M_2 as two independent parameters, unconstrained by grand unification. We also consider, simultaneously, the other important invisible Higgs decay channel in the NMSSM, namely the decay into the lightest CP odd scalars, h1a1a1h_1 \to a_1 a_1, which is studied in detail. With the invisible Higgs branching ratio being constrained by the present LHC results, we find that μeff<170\mu_{eff} < 170~GeV and M1<80M_1 < 80~GeV is disfavored in NMSSM for fixed values of the other input parameters. The dependence of our results on the parameters of NMSSM is discussed in detail.Comment: 20 pages, 14 figures, to appear in Physical Review

    Strings with extended non-Abelian gauge interaction

    Full text link
    The new generalization of the gauge interaction for the bosonic strings is found. We consider some quasiequivariant maps from the space of metrics on the worldsheet to the space of nn-tuples of one- and two-dimensional loops. The two-dimensional case is based on the cylinders interacted with a path space connection. The special 2-gauge string model is formulated using two 1-connections, non-Abelian background symmetric tensor field and non-Abelian 2-form. The branched non-Abelian space-time is the result of our construction.Comment: 11 page

    Realization of Resistorless Lossless Positive and Negative Grounded Inductor Simulators Using Single ZC-CCCITA

    Get PDF
    This paper is in continuation with the very recent work of Prasad et al. [14], wherein new realizations of grounded and floating positive inductor simulator using current differencing transconductance amplifier (CDTA) are reported. The focus of the paper is to provide alternate realizations of lossless, both positive and negative inductor simulators (PIS and NIS) in grounded form using z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), which can be considered as a derivative of CDTA, wherein the current differencing unit (CDU) is reduced to a current-controlled current inverting unit. We demonstrate that only a single ZC-CCCITA and one grounded capacitor are sufficient to realize grounded lossless PIS or NIS. The proposed circuits are resistorless whose parameters can be controlled through the bias currents. The workability of the proposed PIS is validated by SPICE simulations on three RLC prototypes
    corecore