5,439 research outputs found

    Microwave photovoltage and photoresistance effects in ferromagnetic microstrips

    Full text link
    We investigate the dc electric response induced by ferromagnetic resonance in ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization precession alters the angle of the magnetization with respect to both dc and rf current. Consequently the time averaged anisotropic magnetoresistance (AMR) changes (photoresistance). At the same time the time-dependent AMR oscillation rectifies a part of the rf current and induces a dc voltage (photovoltage). A phenomenological approach to magnetoresistance is used to describe the distinct characteristics of the photoresistance and photovoltage with a consistent formalism, which is found in excellent agreement with experiments performed on in-plane magnetized ferromagnetic microstrips. Application of the microwave photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure

    The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model

    Full text link
    The integrated Sachs-Wolfe (ISW) effect is an important implication for dark energy. In this paper, we have calculated the power spectrum of the ISW effect in the time varying vacuum cosmological model, where the model parameter β=4.407\beta=4.407 is obtained by the observational constraint of the growth rate. It's found that the source of the ISW effect is not only affected by the different evolutions of the Hubble function H(a)H(a) and the dimensionless matter density Ωm(a)\Omega_m(a), but also by the different growth function D+(a)D_+(a), all of which are changed due to the presence of matter production term in the time varying vacuum model. However, the difference of the ISW effect in Λ(t)CDM\Lambda(t)\textmd{CDM} model and ΛCDM\Lambda \textmd{CDM} model is lessened to a certain extent due to the integration from the time of last scattering to the present. It's implied that the observations of the galaxies with high redshift are required to distinguish the two models

    On the line shape of the electrically detected ferromagnetic resonance

    Full text link
    This work reviews and examines two particular issues related with the new technique of electrical detection of ferromagnetic resonance (FMR). This powerful technique has been broadly applied for studying magnetization and spin dynamics over the past few years. The first issue is the relation and distinction between different mechanisms that give rise to a photovoltage via FMR in composite magnetic structures, and the second is the proper analysis of the FMR line shape, which remains the "Achilles heel" in interpreting experimental results, especially for either studying the spin pumping effect or quantifying the spin Hall angles via the electrically detected FMR.Comment: 14 pages, 9 figure

    Quantum mechanical path integrals and thermal radiation in static curved spacetimes

    Get PDF
    The propagator of a spinless particle is calculated from the quantum mechanical path integral formalism in static curved spacetimes endowed with event-horizons. A toy model, the Gui spacetime, and the 2D and 4D Schwarzschild black holes are considered. The role of the topology of the coordinates configuration space is emphasised in this framework. To cover entirely the above spacetimes with a single set of coordinates, tortoise coordinates are extended to complex values. It is shown that the homotopic properties of the complex tortoise configuration space imply the thermal behaviour of the propagator in these spacetimes. The propagator is calculated when end points are located in identical or distinct spacetime regions separated by one or several event-horizons. Quantum evolution through the event-horizons is shown to be unitary in the fifth variable.Comment: 22 pages, 10 figure

    Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology

    Full text link
    A quantum mechanical path integral derivation is given of a thermal propagator in non-static Gui spacetime. The thermal nature of the propagator is understood in terms of homotopically non-trivial paths in the configuration space appropriate to tortoise coordinates. The connection to thermal emission from collapsing black holes is discussed.Comment: 20 pages, major revised version, 9 figures, new titl

    Quantum Statistical Entropy and Minimal Length of 5D Ricci-flat Black String with Generalized Uncertainty Principle

    Full text link
    In this paper, we study the quantum statistical entropy in a 5D Ricci-flat black string solution, which contains a 4D Schwarzschild-de Sitter black hole on the brane, by using the improved thin-layer method with the generalized uncertainty principle. The entropy is the linear sum of the areas of the event horizon and the cosmological horizon without any cut-off and any constraint on the bulk's configuration rather than the usual uncertainty principle. The system's density of state and free energy are convergent in the neighborhood of horizon. The small-mass approximation is determined by the asymptotic behavior of metric function near horizons. Meanwhile, we obtain the minimal length of the position Δx\Delta x which is restrained by the surface gravities and the thickness of layer near horizons.Comment: 11pages and this work is dedicated to the memory of Professor Hongya Li

    Benign and Suspicious Ovarian Masses—MR Imaging Criteria for Characterization: Pictorial Review

    Get PDF
    Ovarian masses present a special diagnostic challenge when imaging findings cannot be categorized into benign or malignant pathology. Ultrasonography (US), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) are currently used to evaluate ovarian tumors. US is the first-line imaging investigation for suspected adnexal masses. Color Doppler US helps the diagnosis identifying vascularized components within the mass. CT is commonly performed in preoperative evaluation of a suspected ovarian malignancy, but it exposes patients to radiation. When US findings are nondiagnostic or equivocal, MRI can be a valuable problem solving tool, useful to give also surgical planning information. MRI is well known to provide accurate information about hemorrhage, fat, and collagen. It is able to identify different types of tissue contained in pelvic masses, distinguishing benign from malignant ovarian tumors. The knowledge of clinical syndromes and MRI features of these conditions is crucial in establishing an accurate diagnosis and determining appropriate treatment. The purpose of this paper is to illustrate MRI findings in neoplastic and non-neoplastic ovarian masses, which were assessed into three groups: cystic, solid, and solid/cystic lesions. MRI criteria for the correct diagnosis and characteristics for differentiating benign from malignant conditions are shown in this paper
    corecore