40,950 research outputs found

    Person re-identification by robust canonical correlation analysis

    Get PDF
    Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    Chiral expansion of the π0→γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0→γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    Independent component analysis for unmixing multi-wavelength photoacoustic images

    Get PDF
    Independent component analysis (ICA) is a blind source unmixing method that may be used under certain circumstances to decompose multi-wavelength photoacoustic (PA) images into separate components representing individual chromophores. It has the advantages of being fast, easy to implement and computationally inexpensive. This study uses simulated multi-wavelength PA images to investigate the conditions required for ICA to be an accurate unmixing method and compares its performance to linear inversion. An approximate fluence adjustment based on spatially homogeneous optical properties equal to that of the background region was applied to the PA images before unmixing with ICA or LI. ICA is shown to provide accurate separation of the chromophores in cases where the absorption coefficients are lower than certain thresholds, some of which are comparable to physiologically relevant values. However, the results also show that the performance of ICA abruptly deteriorates when the absorption is increased beyond these thresholds. In addition, the accuracy of ICA decreases in the presence of spatially inhomogeneous absorption in the background. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    • …
    corecore