27,247 research outputs found
Galois Structure and De Rhan Invariants of Elliptic Curves
Let K be a number field with ring of integers OK. Suppose a finite group G acts numerically tamely on a regular scheme X over OK. One can then define a de Rham invariant class in the class group Cl(OK[G]), which is a refined Euler characteristic of the de Rham complex of X. Our results concern the classification of numerically tame actions and the de Rham invariant classes. We first describe how all Galois etale G-covers of a K-variety may be built up from finite Galois extensions of K and from geometric covers. When X is a curve of positive genus, we show that a given etale action of G on X extends to a numerically tame action on a regular model if and only if this is possible on the minimal model. Finally, we characterize the classes in Cl(OK[G]) which are realizable as the de Rham invariants for minimal models of elliptic curves when G has prime order
Multidimensional Bosonization
Bosonization of degenerate fermions yields insight both into Landau Fermi
liquids, and into non-Fermi liquids. We begin our review with a pedagogical
introduction to bosonization, emphasizing its applicability in spatial
dimensions greater than one. After a brief historical overview, we present the
essentials of the method. Well known results of Landau theory are recovered,
demonstrating that this new tool of many-body theory is robust. Limits of
multidimensional bosonization are tested by considering several examples of
non-Fermi liquids, in particular the composite fermion theory of the
half-filled Landau level. Nested Fermi surfaces present a different challenge,
and these may be relevant in the cuprate superconductors. We conclude by
discussing the future of multidimensional bosonization.Comment: 91 pages, 15 eps figures, LaTeX. Minor changes to match the published
versio
Sixteen-fermion and related terms in M-theory on T**2
Certain one-loop processes in eleven-dimensional supergravity compactified on
T**2 determine exact, non-perturbative, terms in the effective action of type
II string theories compactified on a circle. One example is the modular
invariant U(1)-violating interaction of sixteen complex spin-1/2 fermions of
ten-dimensional type IIB theory. This term, together with the (curvature)**4
term, and many other terms of the same dimension are all explicitly related by
supersymmetry.Comment: 14 Pages, Latex, no figures, Minor changes, version to appear in PL
Light-cone Quantum Mechanics of the Eleven-dimensional Superparticle
The linearized interactions of eleven-dimensional supergravity are obtained
in a manifestly supersymmetric light-cone gauge formalism. These vertices are
used to calculate certain one-loop processes involving external gravitini,
antisymmetric three-form potentials and gravitons, thereby determining some
protected terms in the effective action of M-theory compactified on a
two-torus.Comment: 31 pages, harvmac (b); A minor TeX error correcte
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Electronic structure of metallic antiperovskite compound GaCMn
We have investigated electronic structures of antiperovskite GaCMn and
related Mn compounds SnCMn, ZnCMn, and ZnNMn. In the paramagnetic
state of GaCMn, the Fermi surface nesting feature along the
direction is observed, which induces the antiferromagnetic (AFM) spin ordering
with the nesting vector {\bf Q} . Calculated
susceptibilities confirm the nesting scenario for GaCMn and also explain
various magnetic structures of other antiperovskite compounds. Through the band
folding effect, the AFM phase of GaCMn is stabilized. Nearly equal
densities of states at the Fermi level in the ferromagnetic and AFM phases of
GaCMn indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM
We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)
- …