997 research outputs found

    Band-Gap Engineering in two-dimensional periodic photonic crystals

    Full text link
    A theoretical investigation is made of the dispersion characteristics of plasmons in a two-dimensional periodic system of semiconductor (dielectric) cylinders embedded in a dielectric (semiconductor) background. We consider both square and hexagonal arrangements and calculate extensive band structures for plasmons using a plane-wave method within the framework of a local theory. It is found that such a system of semiconductor-dielectric composite can give rise to huge full band gaps (with a gap to midgap ratio ≈2\approx 2) within which plasmon propagation is forbidden. The most interesting aspect of this investigation is the huge lowest gap occurring below a threshold frequency and extending up to zero. The maximum magnitude of this gap is defined by the plasmon frequency of the inclusions or the background as the case may be. In general we find that greater the dielectric (and plasmon frequency) mismatch, the larger this lowest band-gap. Whether or not some higher energy gaps appear, the lowest gap is always seen to exist over the whole range of filling fraction in both geometries. Just like photonic and phononic band-gap crystals, semiconducting band-gap crystals should have important consequences for designing useful semiconductor devices in solid state plasmas.Comment: 16 pages, 5 figure

    Biological utilities of Parthenium hysterophorus

    Get PDF
    Parthenium hysterophorus L. (Asteraceae) is a serious weed of pastures, wasteland and agricultural fields in world. Various problems are posed by the weed to human health, agriculture, live stock production and biodiversity. It is used as folk remedy against various afflictions. The review discusses several prominent biological utilities of P. hysterophorus as it contains several important chemical constituents mainly histamine, saponin, glucosides and triterpene (sesquiterpene) and can be of use for the purpose of biocontrol of various pathogens , for its medicinal utility and even for the purpose of food

    Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: Zero magnetic field

    Full text link
    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems

    Au9+ swift heavy ion irradiation of Zn[CS(NH2)2]3SO4 crystal: Crystalline perfection and optical properties

    Full text link
    The single crystal of tris(thiourea)zinc sulphate (Zn[CS(NH2)2]3SO4) was irradiated by 150 MeV Au9+ swift heavy ions and analyzed in comparison with pure crystal for crystalline perfection and optical properties. The Fourier transform infrared and x-ray powder diffraction inferred that swift ions lead the disordering and breaking of molecular bonds in lattice without formation of new structural phases. High resolution X-ray diffraction (HRXRD) revealed the abundance of point defects, and formation of mosaics and low angle grain boundaries in the irradiated region of crystal. The swift ion irradiation found to affect the lattice vibrational modes and functional groups significantly. The defects induced by heavy ions act as the color centers and resulted in enhance of photoluminescence emission intensity. The optical transparency and band gap found to be decreased.Comment: 7 page

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press
    • …
    corecore