461 research outputs found

    Hamilton - Jacobi treatment of front-form Schwinger model

    Full text link
    The Hamilton-Jacobi formalism was applied to quantize the front-form Schwinger model. The importance of the surface term is discussed in detail. The BRST-anti-BRST symmetry was analyzed within Hamilton-Jacobi formalism.Comment: 11 pages, to be published in Int. Journ. Mod. Phys.

    MODELING OF EXTRUSION PROCESS USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORKS

    Get PDF
    Artificial neural networks are a powerful tool for modeling of extrusion processing of food materials. Wheat flour and wheat– black soybean blend (95:5) were extruded in a single screw Brabender extruder with varying temperature (120 and 140 oC), dry basis moisture content (18 and 20%) and screw speed (156, 168, 180, 192 and 204 rpm). The specific mechanical energy, water absorption index, water solubility index, expansion ratio and sensory characteristics (crispness, hardness, appearance and overall acceptability) were measured. Well expanded products could be obtained from wheat flour as well as the blend of wheat– black soybean. The results showed that artificial neural network (ANN) models performed better than the response surface methodology (RSM) models in describing the extrusion process and characteristics of the extruded product in terms of specific mechanical energy requirement, expansion ratio, water absorption index, water solubility index as well the sensory characteristics. The ANN models were better than RSM models both in case of the individual as well as the pooled data of wheat flour and wheat- black soybean extrusion

    Geometrical dynamics of Born-Infeld objects

    Get PDF
    We present a geometrical inspired study of the dynamics of DpDp-branes. We focus on the usual nonpolynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1D1-brane immersed in a AdS3×S3AdS_3 \times S^3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.Comment: LaTex, 20 pages, no figure

    Factors that influence shelterbelt retention and removal in prairie agriculture as identified by Saskatchewan producers

    Get PDF
    Non-Peer ReviewedThe role of shelterbelts in prairie agriculture is changing. Traditionally, shelterbelts were promoted and adopted for soil stabilization and protection of farm infrastructure, equipment, and livestock from harsh weather elements; however, advances in production technology, larger scale operations, and the removal of a subsidy (distribution of free seedlings) have changed the context in which shelterbelts are currently being maintained, planted, or removed. This research identified the factors that are influencing producer’s management decisions related to retention and adoption of shelterbelts in the early 21st century in Saskatchewan, Canada. In the summer of 2013, surveys were conducted with producers from throughout the province of Saskatchewan (and several from Alberta). From the surveys, costs, benefits, and factors influencing producer’s management decisions, related to shelterbelts in the farm operations, were identified. Survey results show that 40% of the produces removed shelterbelts from their operations. Reasons for such decisions included: high labor requirements, difficulty in the operation of large equipment, and loss of land for production. Those who did not remove shelterbelts recognized their non-economic values more than those who removed them. Shelterbelts have the potential to play a major role in climate change mitigation by sequestering significant amounts of atmospheric CO2 into the soil and as biomass carbon in aboveground and belowground biomass of planted shelterbelt trees or shrubs within the agricultural landscape, both presently and in the future. As a result, understanding the context in which producers are making decisions related to this agroforestry practice will be important from a policy perspective

    Electronic Structure And Vibrational Analysis Of Norclozapine (8-Chloro-11-Piperazine-1-Yl-5H-Dibenzo[B,E] [1,4]Diazepine)

    Get PDF
    Introduction: N-desmethyl clozapine or norclozapine is a benzodiazepine substituted with chloro and piperazino groups which is a major metabolite of clozapine; a potent and selective 5-HT2C serotonin receptor antagonist. It has a role as a metabolite, a delta-opioid receptor agonist, and a serotonergic antagonist. It is a dibenzodiazepine, a member of piperazines, and an organochlorine compound. Methods: The structure and the ground state energy of the molecules under investigation have been analyzed employing the DFT / B3LYP level. The optimized geometry and their properties such as equilibrium energy, frontier orbital energy, dipole moment, and vibrational frequencies have been used to understand the activity of Norclozapine. Results: The calculated highest occupied molecule orbital or HOMO and the lowest unoccupied molecular orbital or LUMO energies show that charge transfer within the molecule. The vibrational spectra of IR and Raman have been interpreted with the help of the B3LYP level of theory with the 6-31G basis set from the Density function theory. Conclusions: The optimized structural parameters such as bond lengths, and bond angle were determined at B3LYP level theory with a 6-31G basis set. Simulation work of Norclozapine is in process. Simulation report of Norclozapine we will report very soon. &nbsp

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs

    Get PDF
    The bacterial load on the eggshell surface is a key factor in predicting the bacterial penetration and contamination of the egg interior. The eggshell cuticle is the first line of defense against vertical penetration by microbial food-borne pathogens such as Salmonella Enteritidis. Egg producers are increasingly introducing alternative caging systems into their production chain as animal welfare concerns become of greater relevance to today’s consumer. Stress that is introduced by hen aggression and modified nesting behavior in furnished cages can alter the physiology of egg formation and affect the cuticle deposition/quality. The goal of this study was to determine the impact of caging systems (conventional, enriched, free-run, and free-range), on eggshell cuticle parameters and the eggshell bacterial load. The cuticle plug thickness and pore length were higher in the free-range eggs as compared to conventional eggs. The eggshells from alternative caging (enriched and free-range) had a higher total cuticle as compared to conventional cages. A reduction in bacterial cell counts was observed on eggshells that were obtained from free-range eggs as compared to the enriched systems. An inverse correlation between the contact angle and Salmonella adherence was observed. These results indicate that the housing systems of layer hens can modify the cuticle quality and thereby impact bacterial adherence and food safety.Egg Farmers of Canada (EFC) grant number: 551562, Livestock Research Innovation Corporation (LRIC) grant number 570593PID2020- 116660GB-I00, RNM-938 group (Junta de Andalucía)UCE PP 2016.05 (Universidad de Granada
    corecore