17 research outputs found

    Fast learning but coarse discrimination of colours in restrained honeybees.

    Get PDF
    addresses: Department of Neurobiology, Institute of Biology, Free University of Berlin, 14195 Berlin, Germany.types: Journal Article; Research Support, Non-U.S. Gov't© 2009 Company of Biologists. Post print version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at: http://jeb.biologists.org/content/212/9/1344Colours are quickly learnt by free-moving bees in operant conditioning settings. In the present study, we report a method using the classical conditioning of the proboscis extension response (PER) in restrained honeybees (Apis mellifera), which allows bees to learn colours after just a few training trials. We further analysed how visual learning and discrimination is influenced by the quality of a stimulus by systematically varying the chromatic and achromatic properties of the stimuli. Using differential conditioning, we found that faster colour discrimination learning was correlated with reduced colour similarity between stimuli. In experiments with both absolute and differential conditioning, restrained bees showed poor colour discrimination and broad generalisation. This result is in strong contrast to the well-demonstrated ability of bees to finely discriminate colours under free-flight conditions and raises further questions about the temporal and perceptual processes underlying the ability of bees to discriminate and learn colours in different behavioural contexts

    From Antenna to Antenna: Lateral Shift of Olfactory Memory Recall by Honeybees

    Get PDF
    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1–2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication
    corecore