48 research outputs found

    Measurement of Aromatic-hydrocarbons With the DOAS Technique

    Get PDF
    Long-path DOAS (differential optical absorption spectroscopy) in the ultraviolet spectral region has been shown to be applicable for low-concentration measurements of light aromatic hydrocarbons. However, because of spectral interferences among different aromatics as well as with oxygen, ozone, and sulfur dioxide, the application of the DOAS technique for this group of components is not without problems. This project includes a study of the differential absorption characteristics, between 250 and 280 nm, of twelve light aromatic hydrocarbons representing major constituents in technical solvents used in the automobile industry. Spectral overlapping between the different species, including oxygen, ozone, and sulfur dioxide, has been investigated and related to the chemical structure of the different aromatics. Interference effects in the DOAS application due to spectral overlapping have been investigated both in quantitative and in qualitative terms, with data from a field campaign at a major automobile manufacturing plant

    New Metal-Rich Sulfides Ni 6

    No full text

    A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains.

    No full text
    The Carmal-Bcl10-Malt1 signaling module bridges TCR signaling to the canonical I kappa B kinase (IKK)/NF-kappa B pathway. Covalent attachment of regulatory ubiquitin chains to Malt1 paracaspase directs TCR signaling to IKK activation. Further, the ubiquitin-editing enzyme A20 was recently suggested to suppress T cell activation, but molecular targets for A20 remain elusive. In this paper, we show that A20 regulates the strength and duration of the IKK/NF-kappa B response upon TCR/CD28 costimulation. By catalyzing the removal of K63-linked ubiquitin chains from Malt1, A20 prevents sustained interaction between ubiquitinated Malt1 and the IKK complex and thus serves as a negative regulator of inducible IKK activity. Upon T cell stimulation, A20 is rapidly removed and paracaspase activity of Malt1 has been suggested to cleave A20. Using antagonistic peptides or reconstitution of Malt1(-/-) T cells, we show that Malt1 paracaspase activity is required for A20 cleavage and optimal IL-2 production, but dispensable for initial IKK/NF-kappa B signaling in CD4(+) T cells. However, proteasomal inhibition impairs A20 degradation and impedes TCR/CD28-induced IKK activation. Taken together, A20 functions as a Malt1 deubiquitinating enzyme and proteasomal degradation and de novo synthesis of A20 contributes to balance TCR/CD28-induced IKK/NF-kappa B signaling

    Formation of N719 Dye Multilayers on Dye Sensitized Solar Cell Photoelectrode Surfaces Investigated by Direct Determination of Element Concentration Depth Profiles

    No full text
    The structure of the dye layer adsorbed on the titania substrate in a dye-sensitized solar cell is of fundamental importance for the function of the cell, since it strongly influences the injection of photoelectrons from the excited dye molecules into the titania substrate. The adsorption isotherms of the N719 ruthenium-based dye were determined both with a direct method using the depth profiling technique neutral impact collision ion scattering spectroscopy (NICISS) and with the standard indirect solution depletion method. It is found that the dye layer adsorbed on the titania surface is laterally inhomogeneous in thickness and there is a growth mechanism already from low coverage levels involving a combination of monolayers and multilayers. It is also found that the amount of N719 adsorbed on the substrate depends on the titania structure. The present results show that dye molecules in dye-sensitized solar cells are not necessarily, as presumed, adsorbed as a self-assembled monolayer on the substrate

    Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation.

    No full text
    Rationale: The effects of ultrafine particle inhalation on allergic airway inflammation are of growing interest. The mechanisms underlying these effects are currently under investigation. Objectives: To investigate the role of oxidative stress on the adjuvant activity of inhaled elemental carbon ultrafine particles (EC-UFPs) on allergic airway inflammation. Methods: Ovalbumin-sensitized mice were exposed to EC-UFPs (504 mu g/m(3) for 24 h) or filtered air immediately before allergen challenge and systemically treated with N-acetylcysteine or vehicle before and during EC-UFP inhalation. Allergic inflammation was measured up to 1 week after allergen challenge by means of bronchoalveolar lavage, cytokine/total protein assays, lung function, and histology. Isoprostane levels in lung tissue served to measure oxidative stress. Transmission electron microscopy served to localize ECUFPs in lung tissue and both electrophoretic mobility shift assay and immunohistochemistry to quantify/localize nuclear factor-kappa B (NF-kappa B) activation. Measurements and Main Results: In sensitized and challenged mice EC-UFP inhalation increased allergen-induced lung lipid peroxidation and NF-kappa B activation in addition to inflammatory infiltrate, cytokine release, and airway hyperresponsiveness. Prominent NF-kappa B activation was observed in the same cell types in which EC-UFPs were detected. N-acetylcysteine treatment significantly reduced the adjuvant activity of EC-UFPs. In nonsensitized or sensitized but not challenged mice EC-UFP exposure induced a moderate increase in isoprostanes but no significant effect on other parameters of lung inflammation. Conclusions: Our findings demonstrate a critical role for oxidative stress in EC-UFP-induced augmentation of allergen-induced lung inflammation, where EC-UFP exposure has potentiating effects in lung allergic inflammation. Our data support the concept that allergic individuals are more susceptible to the adverse health effects of EC-UFPs
    corecore