128 research outputs found

    From Architectured Materials to Large-Scale Additive Manufacturing

    Get PDF
    The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across themicroscale ofmaterials and themacroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications

    A Compound Arm Approach to Digital Construction

    No full text
    We introduce a novel large-scale Digital Construction Platform (DCP) for on-site sensing, analysis, and fabrication. The DCP is an in-progress research project consisting of a compound robotic arm system comprised of a 5-axis Altec hydraulic mobile boom arm attached to a 6-axis KUKA robotic arm. Akin to the biological model of human shoulder and hand this compound system utilizes the large boom arm for gross positioning and the small robotic arm for fine positioning and oscillation correction respectively. The platform is based on a fully mobile truck vehicle with a working reach diameter of over 80 feet. It can handle a 1,500 lb lift capacity and a 20 lb manipulation capacity. We report on the progress of the DCP and speculate on potential applications including fabrication of non-standard architectural forms, integration of real-time on-site sensing data, improvements in construction efficiency, enhanced resolution, lower error rates, and increased safety. We report on a case study for platform demonstration through large-scale 3D printing of insulative formwork for castable structures. We discuss benefits and potential future applications.National Science Foundation (U.S.) (Early Concept Grants for Exploratory Research (EAGER) Grant Award 1152550

    Robotic Construction by Contour Crafting: The Case of Lunar Construction

    No full text
    Contour Crafting is a digitally controlled construction process invented by Professor Behrokh Khoshnevis that fabricates components directly from computer models, using layered fabrication technology. By obviating the need for formwork used in traditional concrete construction, CC can reduce costs and construction times significantly. The technique has great potential as a robotic form of construction reliant on relatively minimal human labor as a form of construction in relatively hazardous environments, such as the Moon with its radiation levels that can prove highly damaging. Current research funded by NASA has been exploring the potential for using CC on the Moon to build structures making use of readily available regolith that is found in great abundance on the surface of the Moon. This article offers an overview of this research and evaluates the merits of using CC on the Moon
    • …
    corecore