227 research outputs found

    Symbiotic gap and semi-gap solitons in Bose-Einstein condensates

    Full text link
    Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of inter-species repulsion, while the intra-species interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intra-gap (with both chemical potentials falling into a single bandgap) or inter-gap, otherwise. In the case of the intra-species attraction, a smooth transition takes place between solitons in the semi-infinite gap, the ones in the first finite bandgap, and semi-gap solitons (with one component in a bandgap and the other in the semi-infinite gap).Comment: 5 pages, 9 figure

    Scattering and Trapping of Nonlinear Schroedinger Solitons in External Potentials

    Full text link
    Soliton motion in some external potentials is studied using the nonlinear Schr\"odinger equation. Solitons are scattered by a potential wall. Solitons propagate almost freely or are trapped in a periodic potential. The critical kinetic energy for reflection and trapping is evaluated approximately with a variational method.Comment: 9 pages, 7 figure

    Second magnetization peak in flux lattices: the decoupling scenario

    Full text link
    The second peak phenomena of flux lattices in layered superconductors is described in terms of a disorder induced layer decoupling transition. For weak disorder the tilt mudulus undergoes an apparent discontinuity which leads to an enhanced critical current and reduced domain size in the decoupled phase. The Josephson plasma frequency is reduced by decoupling and by Josephson glass pinning; in the liquid phase it varies as 1/[BT(T+T_0)] where T is temperature, B is field and T_0 is the disorder dependent temperature of the multicritical point.Comment: 5 pages, 1 eps figure, Revtex. Minor changes, new reference

    Matter-wave vortices in cigar-shaped and toroidal waveguides

    Full text link
    We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive inter-atomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation (GPE). The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap.Comment: 6 pages, Physical Review A, in pres

    Stability of the Bragg glass phase in a layered geometry

    Full text link
    We study the stability of the dislocation-free Bragg glass phase in a layered geometry consisting of coupled parallel planes of d=1+1 vortex lines lying within each plane, in the presence of impurity disorder. Using renormalization group, replica variational calculations and physical arguments we show that at temperatures T<TGT<T_G the 3D Bragg glass phase is always stable for weak disorder. It undergoes a weakly first order transition into a decoupled 2D vortex glass upon increase of disorder.Comment: RevTeX. Submitted to EP

    Field-induced transition between magnetically disordered and ordered phases in underdoped La(2-x)SrxCuO4

    Full text link
    We report the observation of a magnetic-field-induced transition between magnetically disordered and ordered phases in slightly under-doped La(2-x)SrxCuO4 with x=0.144. Static incommensurate spin-density-wave order is induced above a critical field of about 3 T, as measured by elastic neutron scattering. Our results allow us to constrain the location of a quantum critical point on the phase diagram.Comment: 10 pages, 2 figures; discussion on the location of a quantum critical point is revise

    Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schr\"{o}dinger equation

    Full text link
    We consider splitting and stabilization of second-order solitons (2-soliton breathers) in a model based on the nonlinear Schr\"{o}dinger equation (NLSE), which includes a small quintic term, and weak resonant nonlinearity management (NLM), i.e., time-periodic modulation of the cubic coefficient, at the frequency close to that of shape oscillations of the 2-soliton. The model applies to the light propagation in media with cubic-quintic optical nonlinearities and periodic alternation of linear loss and gain, and to BEC, with the self-focusing quintic term accounting for the weak deviation of the dynamics from one-dimensionality, while the NLM can be induced by means of the Feshbach resonance. We propose an explanation to the effect of the resonant splitting of the 2-soliton under the action of the NLM. Then, using systematic simulations and an analytical approach, we conclude that the weak quintic nonlinearity with the self-focusing sign stabilizes the 2-soliton, while the self-defocusing quintic nonlinearity accelerates its splitting. It is also shown that the quintic term with the self-defocusing/focusing sign makes the resonant response of the 2-soliton to the NLM essentially broader, in terms of the frequency.Comment: 16 pages, 6 figure

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure
    • …
    corecore