1,460 research outputs found
The hard X-ray burst spectrometer event listing, 1980 - 1985
This event listing is a comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on February 14, 1980 to September 1985. Over 8000 X-ray events were detected in the energy range from 30 to approx. 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
The complete Hard X Ray Burst Spectrometer event list, 1980-1989
This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event
The hard X-ray burst spectrometer event listing 1980-1987
This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
The hard X-ray burst spectrometer event listing 1980, 1981 and 1982
A comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission for the time of launch on February 14, 1980 to March 1983 is provided. Over 6300 X-ray events were detected in the energy range from 30 to approx 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Rydberg Wave Packets are Squeezed States
We point out that Rydberg wave packets (and similar ``coherent" molecular
packets) are, in general, squeezed states, rather than the more elementary
coherent states. This observation allows a more intuitive understanding of
their properties; e.g., their revivals.Comment: 7 pages of text plus one figure available in the literature, LA-UR
93-2804, to be published in Quantum Optics, LaTe
The low-frequency response in the surface superconducting state of ZrB single crystal}
The large nonlinear response of a single crystal ZrB to an ac field
(frequency 40 - 2500 Hz) for has been observed. Direct
measurements of the ac wave form and the exact numerical solution of the
Ginzburg-Landau equations, as well as phenomenological relaxation equation,
permit the study of the surface superconducting states dynamics. It is shown,
that the low frequency response is defined by transitions between the
metastable superconducting states under the action of an ac field. The
relaxation rate which determines such transitions dynamics, is found.Comment: 7 pages, 11 figure
Magnus and Iordanskii Forces in Superfluids
The total transverse force acting on a quantized vortex in a superfluid is a
problem that has eluded a complete understanding for more than three decades.
In this letter I propose a remarkably simple argument, somewhat reminiscent of
Laughlin's beautiful argument for the quantization of conductance in the
quantum Hall effect, to define the superfluid velocity part of the transverse
force. This term is found to be . Although
this result does not seem to be overly controversial, this thermodynamic
argument based only on macroscopic properties of the superfluid does offer a
robust derivation. A recent publication by Thouless, Ao and Niu has
demonstrated that the vortex velocity part of the transverse force in a
homogeneous neutral superfluid is given by the usual form . A combination of these two independent results and the required
Galilean invariance yields that there cannot be any transverse force
proportional to the normal fluid velocity, in apparent conflict with
Iordanskii's theory of the transverse force due to phonon scattering by the
vortex.Comment: RevTex, 1 Encapsulated Postscript figur
Large emergency-response exercises: qualitative characteristics - a survey
Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized
Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement
The Heisenberg uncertainty principle states that the product of the noise in
a position measurement and the momentum disturbance caused by that measurement
should be no less than the limit set by Planck's constant, hbar/2, as
demonstrated by Heisenberg's thought experiment using a gamma-ray microscope.
Here I show that this common assumption is false: a universally valid trade-off
relation between the noise and the disturbance has an additional correlation
term, which is redundant when the intervention brought by the measurement is
independent of the measured object, but which allows the noise-disturbance
product much below Planck's constant when the intervention is dependent. A
model of measuring interaction with dependent intervention shows that
Heisenberg's lower bound for the noise-disturbance product is violated even by
a nearly nondisturbing, precise position measuring instrument. An experimental
implementation is also proposed to realize the above model in the context of
optical quadrature measurement with currently available linear optical devices.Comment: Revtex, 6 page
- …
