12 research outputs found

    HuB (elavl2) mRNA Is Restricted to the Germ Cells by Post-Transcriptional Mechanisms including Stabilisation of the Message by DAZL

    Get PDF
    The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3′UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3′UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3′UTR. Our study suggests that DAZL specifically binds the HuB 3′UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein

    NeuN/Rbfox3 Nuclear and Cytoplasmic Isoforms Differentially Regulate Alternative Splicing and Nonsense-Mediated Decay of Rbfox2

    Get PDF
    Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45–50 kDa identified both as the RNA binding protein Rbfox3 (a member of the Fox family of alternative splicing factors), confirming and extending the identification of the 45 kDa band as Rbfox3 by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45–50 kDa range, and that one of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal. Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of Rbfox2 by Rbfox3 through a novel mechanism

    NeuN/Rbfox3 Nuclear and Cytoplasmic Isoforms Differentially Regulate Alternative Splicing and Nonsense-Mediated Decay of Rbfox2

    Get PDF
    Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45–50 kDa identified both as the RNA binding protein Rbfox3 (a member of the Fox family of alternative splicing factors), confirming and extending the identification of the 45 kDa band as Rbfox3 by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45–50 kDa range, and that one of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal. Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of Rbfox2 by Rbfox3 through a novel mechanism

    Nova Regulates GABA(A) Receptor γ2 Alternative Splicing via a Distal Downstream UCAU-Rich Intronic Splicing Enhancer

    No full text
    Nova is a neuron-specific RNA binding protein targeted in patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia, which is characterized by failure of inhibition of brainstem and spinal motor systems. Here, we have biochemically confirmed the observation that splicing regulation of the inhibitory GABA(A) receptor γ2 (GABA(A)Rγ2) subunit pre-mRNA exon E9 is disrupted in mice lacking Nova-1. To elucidate the mechanism by which Nova-1 regulates GABA(A)Rγ2 alternative splicing, we systematically screened minigenes derived from the GABA(A)Rγ2 and human β-globin genes for their ability to support Nova-dependent splicing in transient transfection assays. These studies demonstrate that Nova-1 acts directly on GABA(A)Rγ2 pre-mRNA to regulate E9 splicing and identify an intronic region that is necessary and sufficient for Nova-dependent enhancement of exon inclusion, which we term the NISE (Nova-dependent intronic splicing enhancer) element. The NISE element (located 80 nucleotides upstream of the splice acceptor site of the downstream exon E10) is composed of repeats of the sequence YCAY, consistent with previous studies of the mechanism by which Nova binds RNA. Mutation of these repeats abolishes binding of Nova-1 to the RNA in vitro and Nova-dependent splicing regulation in vivo. These data provide a molecular basis for understanding Nova regulation of GABA(A)Rγ2 alternative splicing and suggest that general dysregulation of Nova's splicing enhancer function may underlie the neurologic defects seen in Nova's absence

    Nova Regulation of Alternative Splicing in the CNS

    Get PDF
    Nova-1, an autoantigen in paraneoplastic opsoclonus myoclonus ataxia (POMA), a disorder associated with gynecologic cancer and CNS motor dysfunction, is a neuronspecific nuclear RNA binding protein. The work presented here confirms that Nova-1 acts as a regulator of alternative splicing in vivo. In addition to the known target Nova-dependent splicing regulation, exon 3A of glycine receptor a2 subunit (GlyRa2), two new targets are identified, which are the alternative exon, E9 in the inhibitory neurotransmitter receptor subunit, GABAARy2, and the alternatively spliced exon H in Nova-l\u27s own message. Nova acts to enhance alternative exon inclusion in GlyRcc2 and GABAARy2 mRNAs and to repress alternative exon usage in its own message, thus acting as a dual function splicing regulator. Sequence elements necessary and sufficient for Nova-dependent splicing regulation of these two new targets were elucidated, and model is presented whereby Nova differentially regulates exon inclusion in a manner dependent on the location of the Nova binding site within the pre-mRNA. Also, Nova proteins localize to distinct subnuclear foci, but fail to co-localize with a number known proteins that occupy sub-nuclear structural domains. Unlike nuclear speckles, which contain a number of other splicing factors, Nova foci are disrupted by treatment the cells with actinomycin-D, consistent with the hypothesis that the formation andmaintenance of Nova foci is an active process that is transcription dependent. Finally,differential gene expression screens were undertaken, leading to the identification number of additional potential targets of Nova regulation

    Nova autoregulation reveals dual functions in neuronal splicing

    No full text
    The Nova family of neuron-specific RNA-binding proteins were originally identified as targets in an autoimmune neurologic disease characterized by failure of motor inhibition. Nova-1 regulates alternative splicing of pre-mRNAs encoding the inhibitory neurotransmitter receptor subunits GABA(A)Rγ2 and GlyRα2 by directly binding intronic elements, resulting in enhancement of exon inclusion. Here we identify exon E4 in the Nova-1 pre-mRNA itself, encoding a phosphorylated protein domain, as an additional target of Nova-dependent splicing regulation in the mouse spinal cord. Nova binding to E4 is necessary and sufficient for Nova-dependent exon exclusion. E4 harbors five repeats of the known Nova-binding tetranucleotide YCAY and mutation of these elements destroys Nova-dependent regulation. Furthermore, swapping of the sites from Nova-1 and GABA(A)Rγ2 indicates that the ability of Nova to enhance or repress alternative exon inclusion is dependent on the position of the Nova-binding element within the pre-mRNA. These studies demonstrate that in addition to its previously described role as a splicing activator, Nova autoregulates its own expression by acting as a splicing repressor

    Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion

    No full text
    Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels

    miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking

    Get PDF
    This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.Department of Health | National Health and Medical Research Council (NHMRC) GNT1068773, GNT1128479, GNT1083961 Cancer Council South Australia Beat Cancer Fellowship Prostate Cancer Foundation Foundation 1
    corecore