61 research outputs found
What Is the Important Point Related to Follow-Up Sonographic Evaluation for the Developmental Dysplasia of the Hip?
Developmental dysplasia of the hip (DDH) is an important cause of childhood disability. Subluxation or dislocation can be diagnosed through pediatric physical examination; nevertheless, the ultrasonographic examination is necessary in diagnosing certain borderline cases. It has been evaluated routine sonographic examination of 2,444 hips of 1,222 babies to determine differences in both, developmental dysplasia and types of hips, and evaluated their development on the 3-month follow-up. Evaluating the pathologic alpha angles under 59, there was no statistically significant differences between girls and boys in both right (55.57 +/- 3.73) (56.20 +/- 4.01), (p = 0.480), and left (55.79 +/- 3.96) (57.00 +/- 3.84), (p = 0.160) hips on the 45th day of life. Routine sonographic examinations on the 45th day of life revealed that 51 of (66.2%) 77 type 2a right hips were girls and 26 (33.8%) were boys. The number of the right hips that develop into type 1 was 38 (74.5%) for girls and 26 (100%) for boys on the 90th day of life (p = 0.005). A total of 87 type 2a left hips included 64 girls (73.6%) and 23 boys (26.4%). In the 90th day control, 49 right hip of girls (76.6%) and 21 right hip of boys (91.3%) developed into type 1 (p = 0.126). In the assessment of both left and right hips, girls showed a significantly higher frequency in latency and boys showed significantly higher development in the control sonography. A total of 31 girls (2.5%) and 11 boys (0.9%) accounted for a total of 42 (3.4%) cases who showed bilateral type 2a hips in 1,222 infants. On the 90th day control, 26 girls (83.9%) and all 11 boys (100%) developed into type 1 (p = 0.156). The study emphasizes the importance of the sonographic examination on the 90th day of life. Results of the investigation include the data of sonographic screening of DDH on the 45th day, and also stress the importance of the 90th-day control sonography after a close follow-up with physical examination between 45th and 90th days of life
Extension of the primary care research object model (PCROM) as clinical research information model (CRIM) for the “learning healthcare system”
Background:
Patient data from general practices is already used for many types of epidemiological research and increasingly, primary care systems to facilitate randomized clinical trials. The EU funded project TRANSFoRm aims to create a “Learning Healthcare System” at a European level that is able to support all types of research using primary care data, to recruit patients and follow patients in clinical studies and to improve diagnosis and therapy. The implementation of such a Learning Healthcare System needs an information model for clinical research (CRIM), as an informational backbone to integrate aspects of primary care with clinical trials and database searches.
Methods:
Workflow descriptions and corresponding data objects of two clinical use cases (Gastro-Oesophageal Reflux Disease and Type 2 Diabetes) were described in UML activity diagrams. The components of activity diagrams were mapped to information objects of PCROM (Primary Care Research Object Model) and BRIDG (Biomedical Research Integrated Domain Group) and evaluated. The class diagram of PCROM was adapted to comply with workflow descriptions.
Results:
The suitability of PCROM, a primary care information model already used for clinical trials, to act as an information model for TRANSFoRm was evaluated and resulted in its extension with 14 new information object types, two extensions of existing objects and the introduction of two new high-ranking concepts (CARE area and ENTRY area). No PCROM component was redundant. Our result illustrates that in primary care based research an important but underestimated portion of research activity takes place in the area of care (e.g. patient consultation, screening, recruitment and response to adverse events). The newly introduced CARE area for care-related research activities accounts for this shift and includes Episode of Care and Encounter as two new basic elements. In the ENTRY area different aspects of data collection were combined, including data semantics for observations, assessment activities, intervention activities and patient reporting to enable case report form (CRF) based data collection combined with decision support.
Conclusions
Research with primary care data needs an extended information model that covers research activities at the care site which are characteristic for primary care based research and the requirements of the complicated data collection processes
- …