10 research outputs found

    A case–control analysis of oral contraceptive use and breast cancer subtypes in the African American Breast Cancer Epidemiology and Risk Consortium

    Get PDF
    Abstract Introduction Recent oral contraceptive (OC) use has been consistently associated with increased risk of breast cancer, but evidence on specific breast cancer subtypes is sparse. Methods We investigated recency and duration of OC use in relation to molecular subtypes of breast cancer in a pooled analysis of data from the African American Breast Cancer Epidemiology and Risk Consortium. The study included 1,848 women with estrogen receptor-positive (ER+) breast cancer, 1,043 with ER-negative (ER-) breast cancer (including 494 triple negative (TN) tumors, which do not have receptors for estrogen, progesterone, and human epidermal growth factor 2), and 10,044 controls. Multivariable polytomous logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for exposure categories relative to never use, controlling for potential confounding variables. Results OC use within the previous 5 years was associated with increased risk of ER+ (OR 1.46, 95% CI 1.18 to 1.81), ER- (OR 1.57, 95% CI 1.22 to 1.43), and TN (OR 1.78, 95% CI 1.25 to 2.53) breast cancer. The risk declined after cessation of use but was apparent for ER+ cancer for 15 to 19 years after cessation and for ER- breast cancer for an even longer interval after cessation. Long duration of use was also associated with increased risk of each subtype, particularly ER-. Conclusions Our results suggest that OC use, particularly recent use of long duration, is associated with an increased risk of ER+, ER-, and TN breast cancer in African American women. Research into mechanisms that explain these findings, especially the association with ER- breast cancer, is needed

    Activity and Functional Importance of Helicobacter pylori Virulence Factors

    No full text
    International audienceHelicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed

    ATLAS

    No full text
    % ATLAS \\ \\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and Bs0 B ^0 _{s} -mixing. \\ \\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrometers. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, τ\tau-leptons and b-quark jets are performed over η| \eta | < 2.5. The complete hadronic energy measurement extends over η| \eta | < 4.7. \\ \\The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. \\ \\The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten-Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. \\ \\Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are used in the barrel region complemented with superconducting end-cap toroids in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provide
    corecore