124 research outputs found

    Neutrino Electromagnetic Form Factors Effect on the Neutrino Cross Section in Dense Matter

    Full text link
    The sensitivity of the differential cross section of the interaction between neutrino-electron with dense matter to the possibly nonzero neutrino electromagnetic properties has been investigated. Here, the relativistic mean field model inspired by effective field theory has been used to describe non strange dense matter, both with and without the neutrino trapping. We have found that the cross section becomes more sensitive to the constituent distribution of the matter, once electromagnetic properties of the neutrino are taken into account. The effects of electromagnetic properties of neutrino on the cross section become more significant for the neutrino magnetic moment mu_nu > 10^{-10} mu_B and for the neutrino charge radius R > 10^{-5} MeV^{-1}.Comment: 24 pages, 10 figures, submitted to Physical Review

    Технология получения ультратонкого заднего послойного трансплантата роговицы в условиях Глазного тканевого банка

    Get PDF
    Objective: to develop technologies for preoperative preparation of the posterior lamellar corneal graft based on our own formulation of the preservation medium for optimal dehydration of the donor cornea and a technique for cutting out an ultrathin flap using an optimized method at the Eye Tissue Bank. Materials methods. In a series of experimental studies, we obtained data on the hydration level of cadaveric donor corneas that were preserved in various solutions at different observation periods. Using 16 corneas, analytical weighing and pachymetry were performed via optical coherence tomography in the experimental (n = 8) and control (n = 8) groups. Morphological and functional characteristics of the corneal endothelium were then assessed. At the next stage of work, ultrathin grafts were formed from 16 corneas after hypothermic preservation in the experimental (n = 8) and control (n = 8) solutions by single-pass microkeratome, followed by microscopy of the samples using a scanning electron microscope. Results. After the first days of preservation in the proposed solution, there was dehydration of 9% cornea in the experimental group in comparison with the samples of the control group. After 4 days of preservation, there was no reliable difference found between the groups (p > 0.05) in the study of the endothelial cell viability of ultra-thin corneal grafts by immunofluorescent microscopy using the «Live and dead» marker. Scanning electron microscopy revealed that corneal stromal collagen fibers, preserved in the proposed medium, retained their integrity. Conclusion. The proposed technology can be recommended for use at eye banks for formation of an ultra-thin corneal graft at the preoperative stage.Цель исследования. Разработка технологии предоперационной подготовки заднего послойного трансплантата роговицы на основе собственной рецептуры консервационной среды для оптимальной дегидратации донорской роговицы и техники выкраивания ультратонкого лоскута оптимизированным методом в условиях Глазного тканевого банка. Материалы и методы. В серии экспериментальных исследований получены данные по уровню гидратации консервированных в различных растворах трупных донорских роговиц на разных сроках наблюдения. На примере 16 роговиц проведено аналитическое взвешивание и пахиметрия с использованием оптического когерентного томографа в опытной (n = 8) и контрольной (n = 8) группах, после чего оценивали морфофункциональные характеристики эндотелиального пласта клеток роговицы. На следующем этапе работы из 16 роговиц после гипотермической консервации в опытном (n = 8) и контрольном (n = 8) растворе были сформированы ультратонкие трансплантаты по методике одинарного прохода микрокератомом с последующей микроскопией образцов на растровом электронном микроскопе. Результаты. После первых суток консервации в предложенном растворе была выявлена дегидратация на 9% роговиц опытной группы по сравнению с образцами контрольной группы. По окончании 4-х суток консервации при исследовании жизнеспособности эндотелиального пласта клеток ультратонких трансплантатов роговиц методом иммунофлюоресцентной микроскопии с использованием маркера «Live and dead» достоверной разницы между группами выявлено не было (p > 0,05). Проведенная сканирующая электронная микроскопия выявила сохранность архитектоники коллагеновых волокон роговиц, консервированных в предложенной среде. Заключение. Предложенная технология может быть рекомендована для применения в условиях глазных тканевых банков для формирования ультратонкого трансплантата роговицы на предоперационном этапе

    Relativistic theory of inverse beta-decay of polarized neutron in strong magnetic field

    Full text link
    The relativistic theory of the inverse beta-decay of polarized neutron, νe+np+e\nu _{e} + n \to p + e ^{-}, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic field and also for the proton recoil motion. The effect of nucleons anomalous magnetic moments in strong magnetic fields is also discussed. We examine the cross section for different energies and directions of propagation of the initial neutrino accounting for neutrons polarization. It is shown that in the super-strong magnetic field the totally polarized neutron matter is transparent for neutrinos propagating antiparallel to the direction of polarization. The developed relativistic approach can be used for calculations of cross sections of the other URCA processes in strong magnetic fields.Comment: 41 pages in LaTex including 11 figures in PostScript, discussion on nucleons AMM interaction with magnetic field is adde

    Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)\u2014a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration

    Evolutionary signals of selection on cognition from the great tit genome and methylome

    Get PDF
    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.</p

    Bird populations most exposed to climate change are less sensitive to climatic variation

    Get PDF
    The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.Intra-specific variations may contribute to heterogeneous responses to climate change across a species' range. Here, the authors investigate the phenology of two bird species across their breeding ranges, and find that their sensitivity to temperature is uncoupled from exposure to climate change

    The great tit HapMap project: A continental‐scale analysis of genomic variation in a songbird

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The code to reproduce the results is available on Github: https://github.com/lgs85/SpurginBosse_Hapmap. The data, including the Plink-formatted genotype files from all populations, and the downstream outputs are on Dryad: https://doi.org/10.5061/dryad.w3r2280z5.A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.Natural Environment Research Council (NERC)European Research Council (ERC)Biotechnology and Biological Sciences Research Council (BBSRC

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations
    corecore