2,773 research outputs found

    Thermodynamics of the L\'evy spin glass

    Full text link
    We investigate the L\'evy glass, a mean-field spin glass model with power-law distributed couplings characterized by a divergent second moment. By combining extensively many small couplings with a spare random backbone of strong bonds the model is intermediate between the Sherrington-Kirkpatrick and the Viana-Bray model. A truncated version where couplings smaller than some threshold \eps are neglected can be studied within the cavity method developed for spin glasses on locally tree-like random graphs. By performing the limit \eps\to 0 in a well-defined way we calculate the thermodynamic functions within replica symmetry and determine the de Almeida-Thouless line in the presence of an external magnetic field. Contrary to previous findings we show that there is no replica-symmetric spin glass phase. Moreover we determine the leading corrections to the ground-state energy within one-step replica symmetry breaking. The effects due to the breaking of replica symmetry appear to be small in accordance with the intuitive picture that a few strong bonds per spin reduce the degree of frustration in the system

    Counterintuitive density-dependent growth in a long-lived vertebrate after removal of nest predators

    Get PDF
    Examining the phenotypic and genetic underpinnings of life-history variation in long-lived organisms is central to the study of life-history evolution. Juvenile growth and survival are often density dependent in reptiles, and theory predicts the evolution of slow growth in response to low resources (resource-limiting hypothesis), such as under densely populated conditions. However, rapid growth is predicted when exceeding some critical body size reduces the risk of mortality (mortality hypothesis). Here we present results of paired, large-scale, five-year field experiments to identify causes of variation in individual growth and survival rates of an Australian turtle (Emydura macquarii) prior to maturity. To distinguish between these competing hypotheses, we reduced nest predators in two populations and retained a control population to create variation in juvenile density by altering recruitment levels. We also conducted a complementary split-clutch field-transplant experiment to explore the impact of incubation temperature (25° or 30°C), nest predator level (low or high), and clutch size on juvenile growth and survival. Juveniles in high-recruitment (predator removal) populations were not resource limited, growing more rapidly than young turtles in the control populations. Our experiments also revealed a remarkably long-term impact of the thermal conditions experienced during embryonic development on growth of turtles prior to maturity. Moreover, this thermal effect was manifested in turtles approaching maturity, rather than in turtles closer to hatching, and was dependent on population density in the post-hatching rearing environment. This apparent phenotypic plasticity in growth complements our observation of a strong, positive genetic correlation between individual body size in the experimental and control populations over the first five years of life (rG +0.77). Thus, these Australian pleurodiran turtles have the impressive capacity to acclimate plastically to major demographic perturbations and enjoy the longer-term potential to evolve adaptively to maintain viability

    Stability of the replica-symmetric saddle-point in general mean-field spin-glass models

    Full text link
    Within the replica approach to mean-field spin-glasses the transition from ergodic high-temperature behaviour to the glassy low-temperature phase is marked by the instability of the replica-symmetric saddle-point. For general spin-glass models with non-Gaussian field distributions the corresponding Hessian is a 2n×2n2^n\times 2^n matrix with the number nn of replicas tending to zero eventually. We block-diagonalize this Hessian matrix using representation theory of the permutation group and identify the blocks related to the spin-glass susceptibility. Performing the limit n→0n\to 0 within these blocks we derive expressions for the de~Almeida-Thouless line of general spin-glass models. Specifying these expressions to the cases of the Sherrington-Kirkpatrick, Viana-Bray, and the L\'evy spin glass respectively we obtain results in agreement with previous findings using the cavity approach

    The phase diagram of L\'evy spin glasses

    Full text link
    We study the L\'evy spin-glass model with the replica and the cavity method. In this model each spin interacts through a finite number of strong bonds and an infinite number of weak bonds. This hybrid behaviour of L\'evy spin glasses becomes transparent in our solution: the local field contains a part propagating along a backbone of strong bonds and a Gaussian noise term due to weak bonds. Our method allows to determine the complete replica symmetric phase diagram, the replica symmetry breaking line and the entropy. The results are compared with simulations and previous calculations using a Gaussian ansatz for the distribution of fields.Comment: 20 pages, 7 figure

    Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer

    Get PDF
    The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon

    Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes

    Get PDF
    DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono-and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes

    Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes

    Get PDF
    DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono-and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes

    First IBEX observations of the terrestrial plasma sheet and a possible disconnection event

    Get PDF
    The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of energetic neutral atoms (ENAs) emitted from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the magnetosheath stagnation region at the nose of the magnetosphere. This study provides the first IBEX images of the ENA emissions from the nightside magnetosphere and plasma sheet. We show images from two IBEX orbits: one that displays typical plasma sheet emissions, which correlate reasonably well with a model magnetic field, and a second that shows a significant intensification that may indicate a near-Earth (similar to 10 R(E) behind the Earth) disconnection event. IBEX observations from similar to 0.5-6 keV indicate the simultaneous addition of both a hot (several keV) and colder (similar to 700 eV) component during the intensification; if IBEX directly observed magnetic reconnection in the magnetotail, the hot component may signify the plasma energization
    • …
    corecore