545 research outputs found

    Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices

    Full text link
    We investigate how to create entangled states of ultracold atoms trapped in optical lattices by dynamically manipulating the shape of the lattice potential. We consider an additional potential (the superlattice) that allows both the splitting of each site into a double well potential, and the control of the height of potential barrier between sites. We use superlattice manipulations to perform entangling operations between neighbouring qubits encoded on the Zeeman levels of the atoms without having to perform transfers between the different vibrational states of the atoms. We show how to use superlattices to engineer many-body entangled states resilient to collective dephasing noise. Also, we present a method to realize a 2D resource for measurement-based quantum computing via Bell-pair measurements. We analyze measurement networks that allow the execution of quantum algorithms while maintaining the resilience properties of the system throughout the computation.Comment: 23 pages, 6 figures, IOP style, published in New Journal of Physics. Minor corrections/few typos remove

    Fast initialization of a high-fidelity quantum register using optical superlattices

    Get PDF
    We propose a method for the fast generation of a quantum register of addressable qubits consisting of ultracold atoms stored in an optical lattice. Starting with a half filled lattice we remove every second lattice barrier by adiabatically switching on a superlattice potential which leads to a long wavelength lattice in the Mott insulator state with unit filling. The larger periodicity of the resulting lattice could make individual addressing of the atoms via an external laser feasible. We develop a Bose-Hubbard-like model for describing the dynamics of cold atoms in a lattice when doubling the lattice periodicity via the addition of a superlattice potential. The dynamics of the transition from a half filled to a commensurately filled lattice is analyzed numerically with the help of the Time Evolving Block Decimation algorithm and analytically using the Kibble-Zurek theory. We show that the time scale for the whole process, i.e. creating the half filled lattice and subsequent doubling of the lattice periodicity, is significantly faster than adiabatic direct quantum freezing of a superfluid into a Mott insulator for large lattice periods. Our method therefore provides a high fidelity quantum register of addressable qubits on a fast time scale.Comment: 22 pages, 9 figures, IOP style. Revised version to appear in NJ

    Ultra-large Rydberg dimers in optical lattices

    Full text link
    We investigate the dynamics of Rydberg electrons excited from the ground state of ultracold atoms trapped in an optical lattice. We first consider a lattice comprising an array of double-well potentials, where each double well is occupied by two ultracold atoms. We demonstrate the existence of molecular states with equilibrium distances of the order of experimentally attainable inter-well spacings and binding energies of the order of 10^3 GHz. We also consider the situation whereby ground-state atoms trapped in an optical lattice are collectively excited to Rydberg levels, such that the charge-density distributions of neighbouring atoms overlap. We compute the hopping rate and interaction matrix elements between highly-excited electrons separated by distances comparable to typical lattice spacings. Such systems have tunable interaction parameters and a temperature ~10^{-4} times smaller than the Fermi temperature, making them potentially attractive for the study and simulation of strongly correlated electronic systems.Comment: 10 pages, 6 figures, PRA format, version to be published in PR

    Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms

    Full text link
    We demonstrate a novel experimental arrangement which rotates a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.Comment: 7 pages, 5 figures, final versio

    A Single Atom Transistor in a 1D Optical Lattice

    Full text link
    We propose a scheme utilising a quantum interference phenomenon to switch the transport of atoms in a 1D optical lattice through a site containing an impurity atom. The impurity represents a qubit which in one spin state is transparent to the probe atoms, but in the other acts as a single atom mirror. This allows a single-shot quantum non-demolition measurement of the qubit spin.Comment: RevTeX 4, 5 Figures, 4 Page

    Transport enhancement from incoherent coupling between one-dimensional quantum conductors

    Get PDF
    We study the non-equilibrium transport properties of a highly anisotropic two-dimensional lattice of spin-1/2 particles governed by a Heisenberg XXZ Hamiltonian. The anisotropy of the lattice allows us to approximate the system at finite temperature as an array of incoherently coupled one-dimensional chains. We show that in the regime of strong intrachain interactions, the weak interchain coupling considerably boosts spin transport in the driven system. Interestingly, we show that this enhancement increases with the length of the chains, which is related to superdiffusive spin transport. We describe the mechanism behind this effect, compare it to a similar phenomenon in single chains induced by dephasing, and explain why the former is much stronger

    Generation of GHZ entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction

    Full text link
    We propose an efficient method to generate a GHZ entangled state of n photons in n microwave cavities (or resonators) via resonant interaction to a single superconducting qutrit. The deployment of a qutrit, instead of a qubit, as the coupler enables us to use resonant interactions exclusively for all qutrit-cavity and qutrit-pulse operations. This unique approach significantly shortens the time of operation which is advantageous to reducing the adverse effects of qutrit decoherence and cavity decay on fidelity of the protocol. Furthermore, the protocol involves no measurement on either the state of qutrit or cavity photons. We also show that the protocol can be generalized to other systems by replacing the superconducting qutrit coupler with different types of physical qutrit, such as an atom in the case of cavity QED, to accomplish the same task.Comment: 11 pages, 5 figures, accepted by Phys. Rev.

    Ultracold atoms in optical lattices generated by quantized light fields

    Full text link
    We study an ultracold gas of neutral atoms subject to the periodic optical potential generated by a high-QQ cavity mode. In the limit of very low temperatures, cavity field and atomic dynamics require a quantum description. Starting from a cavity QED single atom Hamiltonian we use different routes to derive approximative multiparticle Hamiltonians in Bose-Hubbard form with rescaled or even dynamical parameters. In the limit of large enough cavity damping the different models agree. Compared to free space optical lattices, quantum uncertainties of the potential and the possibility of atom-field entanglement lead to modified phase transition characteristics, the appearance of new phases or even quantum superpositions of different phases. Using a corresponding effective master equation, which can be numerically solved for few particles, we can study time evolution including dissipation. As an example we exhibit the microscopic processes behind the transition dynamics from a Mott insulator like state to a self-ordered superradiant state of the atoms, which appears as steady state for transverse atomic pumping.Comment: 17 pages, 10 figures, Published versio

    Quantum Logic for Trapped Atoms via Molecular Hyperfine Interactions

    Full text link
    We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing atoms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.Comment: Submitted to Physical Review

    Thermodynamics of quantum degenerate gases in optical lattices

    Full text link
    The entropy-temperature curves are calculated for non-interacting Bose and Fermi gases in a 3D optical lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the temperature, and we demonstrate regimes where the atomic sample can be significantly heated or cooled by the loading process. We assess the effects of interactions on a Bose gas in a deep optical lattice, and show that interactions ultimately limit the extent of cooling that can occur during lattice loading.Comment: 6 pages, 4 figures. Submitted to proceedings of Laser Physics 2006 Worksho
    corecore