46 research outputs found

    Raman Response in Doped Antiferromagnets

    Full text link
    The resonant part of the B1gB_{1g} electronic Raman scattering response is calculated within the tJt-J model on a planar lattice as a function of temperature and hole doping, using a finite-temperature diagonalization method for small systems. Results, directly applicable to experiments on cuprates, reveal on doping a very pronounced increase of the width of the two-magnon Raman peak, accompanied by a decrease of the total intensity. At the same time the peak position does not shift substantially in the underdoped regime.Comment: 11 pages revtex, 3 postscript figures. Minor corrections and changes from previous version, to be published in Phys. Rev.

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    Pseudo-gap behavior in dynamical properties of high-Tc cuprates

    Full text link
    Dynamical properties of 2D antiferromagnets with hole doping are investigated to see the effects of short range local magnetic order on the temperature dependence of the dynamical magnetic susceptibility. We show the pseudo-gap like behavior of the temperature dependence of the NMR relaxation rate. We also discuss implications of the results in relations to the observed spin gap like behavior of low-doped copper oxide high-TcT_c superconductors.Comment: 3 pages, Revtex, with 2 eps figures, to appear in J.Phys.Soc.Jpn. Vol.67 No.

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    Anomalous low doping phase of the Hubbard model

    Full text link
    We present results of a systematic Quantum-Monte-Carlo study for the single-band Hubbard model. Thereby we evaluated single-particle spectra (PES & IPES), two-particle spectra (spin & density correlation functions), and the dynamical correlation function of suitably defined diagnostic operators, all as a function of temperature and hole doping. The results allow to identify different physical regimes. Near half-filling we find an anomalous `Hubbard-I phase', where the band structure is, up to some minor modifications, consistent with the Hubbard-I predictions. At lower temperatures, where the spin response becomes sharp, additional dispersionless `bands' emerge due to the dressing of electrons/holes with spin excitatons. We present a simple phenomenological fit which reproduces the band structure of the insulator quantitatively. The Fermi surface volume in the low doping phase, as derived from the single-particle spectral function, is not consistent with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approximation. The anomalous phase extends up to a hole concentration of 15%, i.e. the underdoped region in the phase diagram of high-T_c superconductors. We also investigate the nature of the magnetic ordering transition in the single particle spectra. We show that the transition to an SDW-like band structure is not accomplished by the formation of any resolvable `precursor bands', but rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We discuss implications for the `remnant Fermi surface' in insulating cuprate compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A full ps-version including ps-figures can be found at http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of figures (or the entire manuscript) can also be obtained by e-mail request to: [email protected]

    The pseudogap in underdoped high Tc superconductors in the framework of the Boson Fermion model

    Full text link
    The question of whether the pseudogap in high TcT_c cuprates is related to super conducting precursor effects or to the existence of extrinsic bosonic massive excitations is investigated on the basis of the Boson-Fermion model. The characteristic three peak structure of the electronic spectral function and the temperature dependent Fermi vector derived here are signatures for a two component scenario which can be tested by ARPES and BIS experiments.Comment: revtex version with 3 eps figures. Revised version to appear in Phys. Rev. B. 4 c programs adde

    Pseudogap Induced Antiferromagnetic Spin Correlation in High-Temperature Superconductors

    Full text link
    The pseudogap phenomena observed on cuprate high temperature superconductors are investigated based on the exact diagonalization method on the finite cluster t-J model. The results show the presence of the gap-like behavior in the temperature dependence of various magnetic properties; the NMR relaxation rate, the neutron scattering intensity and the static susceptibility. The calculated spin correlation function indicates that the pseudogap behavior arises associated with the development of the antiferromagnetic spin correlation with decreasing the temperature. The numerical results are presented to clarify the model parameter dependence, that covers the realistic experimental situation. The effect of the next-nearest neighbor hopping tt' is also studied.Comment: 7 pages, Revtex, with 10 eps figures, to appear in J. Phys. Soc. Jpn. (Vol. 70, No. 1

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Finite temperature mobility of a particle coupled to a fermion environment

    Full text link
    We study numerically the finite temperature and frequency mobility of a particle coupled by a local interaction to a system of spinless fermions in one dimension. We find that when the model is integrable (particle mass equal to the mass of fermions) the static mobility diverges. Further, an enhanced mobility is observed over a finite parameter range away from the integrable point. We present a novel analysis of the finite temperature static mobility based on a random matrix theory description of the many-body Hamiltonian.Comment: 11 pages (RevTeX), 5 Postscript files, compressed using uufile

    Specific heat and high-temperature series of lattice models: interpolation scheme and examples on quantum spin systems in one and two dimensions

    Full text link
    We have developed a new method for evaluating the specific heat of lattice spin systems. It is based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. By the choice of an appropriate variable (entropy as a function of energy), a stable interpolation scheme between low and high temperature is performed. Contrary to previous methods, the constraint that the total entropy is log(2S+1) for a spin S on each site is automatically satisfied. We present some applications to quantum spin models on one- and two- dimensional lattices. Remarkably, in most cases, a good accuracy is obtained down to zero temperature.Comment: 10 pages (RevTeX 4) including 11 eps figures. To appear in Phys. Rev.
    corecore