48,058 research outputs found

    Systematic Errors in Future Weak Lensing Surveys: Requirements and Prospects for Self-Calibration

    Full text link
    We study the impact of systematic errors on planned weak lensing surveys and compute the requirements on their contributions so that they are not a dominant source of the cosmological parameter error budget. The generic types of error we consider are multiplicative and additive errors in measurements of shear, as well as photometric redshift errors. In general, more powerful surveys have stronger systematic requirements. For example, for a SNAP-type survey the multiplicative error in shear needs to be smaller than 1%(fsky/0.025)^{-1/2} of the mean shear in any given redshift bin, while the centroids of photometric redshift bins need to be known to better than 0.003(fsky/0.025)^{-1/2}. With about a factor of two degradation in cosmological parameter errors, future surveys can enter a self-calibration regime, where the mean systematic biases are self-consistently determined from the survey and only higher-order moments of the systematics contribute. Interestingly, once the power spectrum measurements are combined with the bispectrum, the self-calibration regime in the variation of the equation of state of dark energy w_a is attained with only a 20-30% error degradation.Comment: 20 pages, 9 figures, to be submitted to MNRAS. Comments are welcom

    Delta Decay in Nuclear Medium

    Full text link
    Proton-nucleus collisions, where the beam proton gets excited to the delta resonance and then decays to pπ+\pi ^+, either inside or outside the nuclear medium, are studied. Cross-sections for various kinematics for the (p,pπ+' \pi ^+) reaction between 500 MeV and 1 GeV beam energy are calculated to see the effects of the nuclear medium on the propagation and decay of the resonance. The cross-sections studied include proton energy spectra in coincidence with the pion, four momentum transfer distributions, and the invariant pπ+\pi^+ mass distributions. We find that the effect of the nuclear medium on these cross-sections mainly reduces their magnitudes. Comparing these cross-sections with those considering the decay of the delta outside the nucleus only, we further find that at 500 MeV the two sets of cross-sections have large differences, while by 1 GeV the differences between them become much smaller.Comment: Latex, 23 pages, 11 figures (not included, can be obtained on request); Submitted to Phy. Rev.

    A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering

    Get PDF
    We propose a simple and accurate method for computing analytically the mass correlation function for cold dark matter and scale-free models that fits N-body simulations over a range that extends from the linear to the strongly non-linear regime. The method, based on the dynamical evolution of the pair conservation equation, relies on a universal relation between the pair-wise velocity and the smoothed correlation function valid for high and low density models, as derived empirically from N-body simulations. An intriguing alternative relation, based on the stable-clustering hypothesis, predicts a power-law behavior of the mass correlation function that disagrees with N-body simulations but conforms well to the observed galaxy correlation function if negligible bias is assumed. The method is a useful tool for rapidly exploring a wide span of models and, at the same time, raises new questions about large scale structure formation.Comment: 10 pages, 3 figure

    The elementary p(p,p'\pi^{+})n reaction

    Full text link
    A detailed study of the elementary p(p,pπ+'\pi^{+})n reaction is presented using the delta isobar model. In this model, in the first step one of the two protons in the initial state gets excited to Δ\Delta . This, in the second step, decays into a nucleon and a pion. For the ppNΔpp \to N\Delta step the parametrized form of the DWBA t-matrix of Jain and Santra, which reproduces most of the available data on ppnΔ++pp \to n\Delta^{++}, is used. The cross-sections studied include the outgoing proton momentum spectra in coincidence with the pion, the outgoing pion momentum spectra and the integrated total cross-section. We find that all the calculated numbers are in good agreement with the corresponding measured cross sections.Comment: 11 pages latex, 5 figures as seperate post-script files; accepted for publication in Physical Review C (1998

    Logarithmic temperature dependence of conductivity at half-integer filling factors: Evidence for interaction between composite fermions

    Full text link
    We have studied the temperature dependence of diagonal conductivity in high-mobility two-dimensional samples at filling factors ν=1/2\nu=1/2 and 3/2 at low temperatures. We observe a logarithmic dependence on temperature, from our lowest temperature of 13 mK up to 400 mK. We attribute the logarithmic correction to the effects of interaction between composite fermions, analogous to the Altshuler-Aronov type correction for electrons at zero magnetic field. The paper is accepted for publication in Physical Review B, Rapid Communications.Comment: uses revtex macro
    corecore