831 research outputs found

    Observation of anomalous Hanle spin precession lineshapes resulting from interaction with localized states

    Get PDF
    It has been shown recently that in spin precession experiments, the interaction of spins with localized states can change the response to a magnetic field, leading to a modified, effective spin relaxation time and precession frequency. Here, we show that also the shape of the Hanle curve can change, so that it cannot be fitted with the solutions of the conventional Bloch equation. We present experimental data that shows such an effect arising at low temperatures in epitaxial graphene on silicon carbide with localized states in the carbon buffer layer. We compare the strength of the effect between materials with different growth methods, epitaxial growth by sublimation and by chemical vapor deposition. The presented analysis gives information about the density of localized states and their coupling to the graphene states, which is inaccessible by charge transport measurements and can be applied to any spin transport channel that is coupled to localized states.Comment: 6 pages, 6 figure

    Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    Get PDF
    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80_{80}Fe20_{20}/Cu/Ni80_{80}Fe20_{20} nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs due to dominant nonlinear contribution of the temperature dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating start to dominate over Peltier heating. Our results signify the importance of local equilibrium for the validity of this phenomenological reciprocity relation.Comment: 5 pages, 5 figure

    Separating spin and charge transport in single wall carbon nanotubes

    Get PDF
    We demonstrate spin injection and detection in single wall carbon nanotubes using a 4-terminal, non-local geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminated and the measured signal is due to spin accumulation only. Combining our results with a theoretical model, we deduce a spin polarization at the contacts of approximately 25 %. We show that the magnetoresistance changes measured in the conventional two-terminal geometry are dominated by effects not related to spin accumulation.Comment: Number of pages: 11 Number of figures:

    The Magneto-coulomb effect in spin valve devices

    Get PDF
    We discuss the influence of the magneto-coulomb effect (MCE) on the magnetoconductance of spin valve devices. We show that MCE can induce magnetoconductances of several per cents or more, dependent on the strength of the coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sign as a function of gate voltage. We emphasize the importance of separating conductance changes induced by MCE from those due to spin accumulation in spin valve devices.Comment: This paper includes 3 figure

    Magnon Planar Hall Effect and Anisotropic Magnetoresistance in a Magnetic Insulator

    Get PDF
    Electrical resistivities can be different for charge currents travelling parallel or perpendicular to the magnetization in magnetically ordered conductors or semiconductors, resulting in the well-known planar Hall effect and anisotropic magnetoresistance. Here, we study the analogous anisotropic magnetotransport behavior for magnons in a magnetic insulator Y3_{3}Fe5_{5}O12_{12}. Electrical and thermal magnon injection, and electrical detection methods are used at room temperature with transverse and longitudinal geometries to measure the magnon planar Hall effect and anisotropic magnetoresistance, respectively. We observe that the relative difference between magnon current conductivities parallel and perpendicular to the magnetization, with respect to the average magnon conductivity, i.e. ∣(σ∥m−σ⊥m)/σ0m∣|(\sigma_{\parallel}^{\textrm{m}}-\sigma_{\perp}^{\textrm{m}})/\sigma_{0}^{\textrm{m}}| , is approximately 5% with the majority of the measured devices showing σ⊥m>σ∥m\sigma_{\perp}^{\textrm{m}}>\sigma_{\parallel}^{\textrm{m}}.Comment: 18 pages, 16 figure

    The controllable pi - SQUID

    Get PDF
    We have fabricated and studied a new kind of DC SQUID in which the magnitude and sign of the critical current of the individual Josephson junctions can be controlled by additional voltage probes connected to the junctions. We show that the amplitude of the voltage oscillations of the SQUID as a function of the applied magnetic field can be tuned and that the phase of the oscillations can be switched between 0 and π\pi in the temperature range of 0.1 - 4.2 K using a suitable control voltage. This is equivalent to the external application of (n+1/2) flux quantum.Comment: 3 Figures, submitted to Applied Physics Letter
    • …
    corecore