5,619 research outputs found

    Spin-state transition and spin-polaron physics in cobalt oxide perovskites: ab initio approach based on quantum chemical methods

    Full text link
    A fully ab initio scheme based on quantum chemical wavefunction methods is used to investigate the correlated multiorbital electronic structure of a 3d-metal compound, LaCoO3. The strong short-range electron correlations, involving both Co and O orbitals, are treated by multireference techniques. The use of effective parameters like the Hubbard U and interorbital U', J terms and the problems associated with their explicit calculation are avoided with this approach. We provide new insight into the spin-state transition at about 90 K and the nature of charge carriers in the doped material. Our results indicate the formation of a t4e2 high-spin state in LaCoO3 for T>90 K. Additionally, we explain the paramagnetic phase in the low-temperature lightly doped compound through the formation of Zhang-Rice-like O hole states and ferromagnetic clusters

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Correlated ab-initio calculations for ground-state properties of II-VI semiconductors

    Full text link
    Correlated ab-initio ground-state calculations, using relativistic energy-consistent pseudopotentials, are performed for six II-VI semiconductors. Valence (ns,npns,np) correlations are evaluated using the coupled cluster approach with single and double excitations. An incremental scheme is applied based on correlation contributions of localized bond orbitals and of pairs and triples of such bonds. In view of the high polarity of the bonds in II-VI compounds, we examine both, ionic and covalent embedding schemes for the calculation of individual bond increments. Also, a partitioning of the correlation energy according to local ionic increments is tested. Core-valence (nsp,(n1)dnsp,(n-1)d) correlation effects are taken into account via a core-polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data we recover about 94% of the experimental cohesive energies; lattice constants are accurate to \sim 1%; bulk moduli are on average 10% too large compared with experiment.Comment: 10 pages, twocolumn, RevTex, 3 figures, accepted Phys. Rev.

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Integrated and Modular Didactic and Methodological Concept for a Learning Factory

    Get PDF
    AbstractAs today manufacturing is not only subject to a single factory, but a network of globally distributed production sites, the goal-oriented encouragement of professional capacities is the motivation for the Learning Factory on Global Production (LGP). In this context, the design of a competency-based and action-oriented didactic and methodological concept is a prerequisite for sustainable learning results and for the development of self-determined problem solving skills. The presented paper gives an overview to the didactic and methodological design approach of the LGP. The integrated modular concept of e-learning and application in the learning factory environment supports self-directed learning and implemented by structuring the teaching/ learning process according to the model of complete action

    Pre-discovery and Follow-up Observations of the Nearby SN 2009nr: Implications for Prompt Type Ia SNe

    Full text link
    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z=0.0122). Following the discovery announcement at what turned out to be ten days after peak, we detected it at V ~15.7 mag in data collected by the All Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10-cm to 6.5-m. Using early photometric data available only from ASAS, we find that the SN is similar to the over-luminous Type Ia SN 1991T, with a peak at Mv=-19.6 mag, and a slow decline rate of Dm_15(B)=0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late time spectra are more similar to those of normal Type Ia SNe. Interestingly, SN 2009nr has a projected distance of 13.0 kpc (~4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the "prompt" component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high cadence all sky surveys conducted using small telescopes for the discovery of nearby (d=<50 Mpc) supernovae.Comment: 11 pages, 11 figures, 4 tables. Accepted for publication in ApJ on 11/02/201

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure

    Metronidazole therapy for periodontitis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66126/1/j.1600-0765.1987.tb01574.x.pd

    Correlation effects in ionic crystals: I. The cohesive energy of MgO

    Full text link
    High-level quantum-chemical calculations, using the coupled-cluster approach and extended one-particle basis sets, have been performed for (Mg2+)n (O2-)m clusters embedded in a Madelung potential. The results of these calculations are used for setting up an incremental expansion for the correlation energy of bulk MgO. This way, 96% of the experimental cohesive energy of the MgO crystal is recovered. It is shown that only 60% of the correlation contribution to the cohesive energy is of intra-ionic origin, the remaining part being caused by van der Waals-like inter-ionic excitations.Comment: LaTeX, 20 pages, no figure

    Influence of electron correlations on ground-state properties of III-V semiconductors

    Full text link
    Lattice constants and bulk moduli of eleven cubic III-V semiconductors are calculated using an ab initio scheme. Correlation contributions of the valence electrons, in particular, are determined using increments for localized bonds and for pairs and triples of such bonds; individual increments, in turn, are evaluated using the coupled cluster approach with single and double excitations. Core-valence correlation is taken into account by means of a core polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data, we obtain lattice constants which agree with experiment within an average error of -0.2%; bulk moduli are accurate to +4%. We discuss in detail the influence of the various correlation contributions on lattice constants and bulk moduli.Comment: 4 pages, Latex, no figures, Phys. Rev. B, accepte
    corecore