1,282 research outputs found

    A Schroedinger link between non-equilibrium thermodynamics and Fisher information

    Full text link
    It is known that equilibrium thermodynamics can be deduced from a constrained Fisher information extemizing process. We show here that, more generally, both non-equilibrium and equilibrium thermodynamics can be obtained from such a Fisher treatment. Equilibrium thermodynamics corresponds to the ground state solution, and non-equilibrium thermodynamics corresponds to excited state solutions, of a Schroedinger wave equation (SWE). That equation appears as an output of the constrained variational process that extremizes Fisher information. Both equilibrium- and non-equilibrium situations can thereby be tackled by one formalism that clearly exhibits the fact that thermodynamics and quantum mechanics can both be expressed in terms of a formal SWE, out of a common informational basis.Comment: 12 pages, no figure

    Power laws of complex systems from Extreme physical information

    Full text link
    Many complex systems obey allometric, or power, laws y=Yx^{a}. Here y is the measured value of some system attribute a, Y is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values +or- n/4, n=0,1,2... Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1). Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I - J = extrem. of Extreme physical information (EPI) is found to provide such a cause. It describes the flow of Fisher information J => I from an attribute value a on the cell level to its exterior observation y. Data y are formed via a system channel function y = f(x,a), with f(x,a) to be found. Extremizing the difference I - J through variation of f(x,a) results in a general allometric law f(x,a)= y = Yx^{a}. Darwinian evolution is presumed to cause a second extremization of I - J, now with respect to the choice of a. The solution is a=+or-n/4, n=0,1,2..., defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by but two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradient

    An affine generalization of evacuation

    Full text link
    We establish the existence of an involution on tabloids that is analogous to Schutzenberger's evacuation map on standard Young tableaux. We find that the number of its fixed points is given by evaluating a certain Green's polynomial at q=−1q = -1, and satisfies a "domino-like" recurrence relation.Comment: 32 pages, 7 figure

    Fisher information, Wehrl entropy, and Landau Diamagnetism

    Full text link
    Using information theoretic quantities like the Wehrl entropy and Fisher's information measure we study the thermodynamics of the problem leading to Landau's diamagnetism, namely, a free spinless electron in a uniform magnetic field. It is shown that such a problem can be "translated" into that of the thermal harmonic oscillator. We discover a new Fisher-uncertainty relation, derived via the Cramer-Rao inequality, that involves phase space localization and energy fluctuations.Comment: no figures. Physical Review B (2005) in pres

    Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures

    Full text link
    In the context of high dynamic range imaging, this study presents a breakthrough for the understanding of Apodized Pupil Lyot Coronagraphs, making them available for arbitrary aperture shapes. These new solutions find immediate application in current, ground-based coronagraphic studies (Gemini, VLT) and in existing instruments (AEOS Lyot Project). They also offer the possiblity of a search for an on-axis design for TPF. The unobstructed aperture case has already been solved by Aime et al. (2002) and Soummer et al. (2003). Analytical solutions with identical properties exist in the general case and, in particular, for centrally obscured apertures. Chromatic effects can be mitigated with a numerical optimization. The combination of analytical and numerical solutions enables the study of the complete parameter space (central obstruction, apodization throughput, mask size, bandwidth, and Lyot stop size).Comment: 7 pages 4 figures - ApJL, accepte

    Delocalization and the semiclassical description of molecular rotation

    Full text link
    We discuss phase-space delocalization for the rigid rotator within a semiclassical context by recourse to the Husimi distributions of both the linear and the 3D−3D-anisotropic instances. Our treatment is based upon the concomitant Fisher information measures. The pertinent Wehrl entropy is also investigated in the linear case.Comment: 6 pages, 3 figure

    Wigner-Yanase skew information as tests for quantum entanglement

    Full text link
    A Bell-type inequality is proposed in terms of Wigner-Yanase skew information, which is quadratic and involves only one local spin observable at each site. This inequality presents a hierarchic classification of all states of multipartite quantum systems from separable to fully entangled states, which is more powerful than the one presented by quadratic Bell inequalities from two-entangled to fully entangled states. In particular, it is proved that the inequality provides an exact test to distinguish entangled from nonentangled pure states of two qubits. Our inequality sheds considerable light on relationships between quantum entanglement and information theory.Comment: 5 page

    Multi-Frequency Synthesis of VLBI Images Using a Generalized Maximum Entropy Method

    Full text link
    A new multi-frequency synthesis algorithm for reconstructing images from multi-frequency VLBI data is proposed. The algorithm is based on a generalized maximum-entropy method, and makes it possible to derive an effective spectral correction for images over a broad frequency bandwidth, while simultaneously reconstructing the spectral-index distribution over the source. The results of numerical simulations demonstrating the capabilities of the algorithm are presented.Comment: 17 pages, 8 figure
    • 

    corecore