62 research outputs found
A Novel Tandem Mass Spectrometry Method for Rapid Confirmation of Medium- and Very Long-Chain acyl-CoA Dehydrogenase Deficiency in Newborns
BACKGROUND:Newborn screening for medium- and very long-chain acyl-CoA dehydrogenase (MCAD and VLCAD, respectively) deficiency, using acylcarnitine profiling with tandem mass spectrometry, has increased the number of patients with fatty acid oxidation disorders due to the identification of additional milder, and so far silent, phenotypes. However, especially for VLCADD, the acylcarnitine profile can not constitute the sole parameter in order to reliably confirm disease. Therefore, we developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method to rapidly determine both MCAD- and/or VLCAD-activity in human lymphocytes in order to confirm diagnosis. METHODOLOGY:LC-MS/MS was used to measure MCAD- or VLCAD-catalyzed production of enoyl-CoA and hydroxyacyl-CoA, in human lymphocytes. PRINCIPAL FINDINGS:VLCAD activity in controls was 6.95+/-0.42 mU/mg (range 1.95 to 11.91 mU/mg). Residual VLCAD activity of 4 patients with confirmed VLCAD-deficiency was between 0.3 and 1.1%. Heterozygous ACADVL mutation carriers showed residual VLCAD activities of 23.7 to 54.2%. MCAD activity in controls was 2.38+/-0.18 mU/mg. In total, 28 patients with suspected MCAD-deficiency were assayed. Nearly all patients with residual MCAD activities below 2.5% were homozygous 985A>G carriers. MCAD-deficient patients with one other than the 985A>G mutation had higher MCAD residual activities, ranging from 5.7 to 13.9%. All patients with the 199T>C mutation had residual activities above 10%. CONCLUSIONS:Our newly developed LC-MS/MS method is able to provide ample sensitivity to correctly and rapidly determine MCAD and VLCAD residual activity in human lymphocytes. Importantly, based on measured MCAD residual activities in correlation with genotype, new insights were obtained on the expected clinical phenotype
Footprint-free human fetal foreskin derived iPSCs: A tool for modeling hepatogenesis associated gene regulatory networks
Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells and can be generated from somatic cells. We have generated episomal plasmid-based and integration-free iPSCs (E-iPSCs) from human fetal foreskin fibroblast cells (HFF1). We used an E-iPSC-line to model hepatogenesis in vitro. The HLCs were characterized biochemically, i.e. glycogen storage, ICG uptake and release, UREA and bile acid production, as well as CYP3A4 activity. Ultra-structure analysis by electron microscopy revealed the presence of lipid and glycogen storage, tight junctions and bile canaliculi- all typical features of hepatocytes. Furthermore, the transcriptome of undifferentiated E-iPSC, DE, HE and HLCs were compared to that of fetal liver and primary human hepatocytes (PHH). K-means clustering identified 100 clusters which include developmental stage-specific groups of genes, e.g. OCT4 expression at the undifferentiated stage, SOX17 marking the DE stage, DLK and HNF6 the HE stage, HNF4α and Albumin is specific to HLCs, fetal liver and adult liver (PHH) stage. We use E-iPSCs for modeling gene regulatory networks associated with human hepatogenesis and gastrulation in general
Coexisting variants in <em>OSTM1</em> and <em>MANEAL</em> cause a complex neurodegenerative disorder with NBIA-like brain abnormalities.
Coexistence of different hereditary diseases is a known phenomenon in populations with a high consanguinity rate. The resulting clinical phenotypes are extremely challenging for physicians involved in the care of these patients. Here we describe a 6-year-old boy with co-occurrence of a homozygous splice defect in OSTM1, causing infantile malignant osteopetrosis, and a loss-of-function variant in MANEAL, which has not been associated with human disease so far. The child suffered from severe infantile-onset neurodegeneration that could not be stopped by bone marrow transplantation. Magnetic resonance imaging demonstrated global brain atrophy and showed hypointensities of globus pallidus, corpora mamillaria, and cerebral peduncles, which were comparable to findings in neurodegeneration with brain iron accumulation disorders. LC-MS/MS analysis of urine and cerebrospinal fluid samples revealed a distinct metabolic profile with accumulation of mannose tetrasaccharide molecules, suggestive of an oligosaccharide storage disease. Our results demonstrate that exome sequencing is a very effective tool in dissecting complex neurological diseases. Moreover, we suggest that MANEAL is an interesting candidate gene that should be considered in the context of neurological disorders with brain iron accumulation and/or indications of an oligosaccharide storage disease
Organometallic half-sandwich iridium anticancer complexes
The low-spin 5d6 IrIII organometallic half-sandwich complexes [(η5-Cpx)Ir(XY)Cl]0/+, Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph), or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph), XY = 1,10-phenanthroline (4−6), 2,2′-bipyridine (7−9), ethylenediamine (10 and 11), or picolinate (12−14), hydrolyze rapidly. Complexes with N,N-chelating ligands readily form adducts with 9-ethylguanine but not 9-ethyladenine; picolinate complexes bind to both purines. Cytotoxic potency toward A2780 human ovarian cancer cells increases with phenyl substitution on Cp*: Cpxbiph > Cpxph > Cp*; Cpxbiph complexes 6 and 9 have submicromolar activity. Guanine residues are preferential binding sites for 4−6 on plasmid DNA. Hydrophobicity (log P), cell and nucleus accumulation of Ir correlate with cytotoxicity, 6 > 5 > 4; they distribute similarly within cells. The ability to displace DNA intercalator ethidium bromide from DNA correlates with cytotoxicity and viscosity of Ir−DNA adducts. The hydrophobicity and intercalative ability of Cpxph and Cpxbiph make a major contribution to the anticancer potency of their IrIII complexes
Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment.
In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca(2+) concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes
- …