2,404 research outputs found
Resonance scattering and singularities of the scattering function
Recent studies of transport phenomena with complex potentials are explained
by generic square root singularities of spectrum and eigenfunctions of
non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that
such singularities produce a significant effect upon the pole behaviour of the
scattering matrix, and more significantly upon the associated residues. This
mechanism explains why by proper choice of the system parameters the resonance
cross section is increased drastically in one channel and suppressed in the
other channel.Comment: 4 pages, 3 figure
Instabilities, nonhermiticity and exceptional points in the cranking model
A cranking harmonic oscillator model, widely used for the physics of fast
rotating nuclei and Bose-Einstein condensates, is re-investigated in the
context of PT-symmetry. The instability points of the model are identified as
exceptional points. It is argued that - even though the Hamiltonian appears
hermitian at first glance - it actually is not hermitian within the region of
instability.Comment: 4 pages, 1 figur
Loschmidt echo and fidelity decay near an exceptional point
Non-Hermitian classical and open quantum systems near an exceptional point
(EP) are known to undergo strong deviations in their dynamical behavior under
small perturbations or slow cycling of parameters as compared to Hermitian
systems. Such a strong sensitivity is at the heart of many interesting
phenomena and applications, such as the asymmetric breakdown of the adiabatic
theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions
and photonic catastrophe. Like for Hermitian systems, the sensitivity to
perturbations on the dynamical evolution can be captured by Loschmidt echo and
fidelity after imperfect time reversal or quench dynamics. Here we disclose a
rather counterintuitive phenomenon in certain non-Hermitian systems near an EP,
namely the deceleration (rather than acceleration) of the fidelity decay and
improved Loschmidt echo as compared to their Hermitian counterparts, despite
large (non-perturbative) deformation of the energy spectrum introduced by the
perturbations. This behavior is illustrated by considering the fidelity decay
and Loschmidt echo for the single-particle hopping dynamics on a tight-binding
lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi
A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field
A model for quantum dots is proposed, in which the motion of a few electrons
in a three-dimensional harmonic oscillator potential under the influence of a
homogeneous magnetic field of arbitrary direction is studied. The spectrum and
the wave functions are obtained by solving the classical problem. The ground
state of the Fermi-system is obtained by minimizing the total energy with
regard to the confining frequencies. From this a dependence of the equilibrium
shape of the quantum dot on the electron number, the magnetic field parameters
and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20
(1997
Orbital Magnetism in Small Quantum Dots with Closed Shells
It is found that various kind of shell structure which occurs at specific
values of the magnetic field leads to the disappearance of the orbital
magnetization for particular magic numbers of small quantum dots with an
electron number .Comment: 4 pages, latex file, four figures as postscript files, to appear at
JETP Letters, December 199
Statistical Fluctuations of Electromagnetic Transition Intensities in pf-Shell Nuclei
We study the fluctuation properties of E2 and M1 transition intensities among
T=0,1 states of A = 60 nuclei in the framework of the interacting shell model,
using a realistic effective interaction for pf-shell nuclei with a Ni56 as a
core. It is found that the B(E2) distributions are well described by the
Gaussian orthogonal ensemble of random matrices (Porter-Thomas distribution)
independently of the isobaric quantum number T_z. However, the statistics of
the B(M1) transitions is sensitive to T_z: T_z=1 nuclei exhibit a Porter-Thomas
distribution, while a significant deviation from the GOE statistics is observed
for self-conjugate nuclei (T_z=0).Comment: 8 pages, latex, 3 figures (ps format
- …