735 research outputs found
Positive, warm T cell crossmatch in cardiac transplantation: With transient vasculitis and without hyperacute rejection
Cyclosporine metabolite concentrations in the blood of liver, heart, kidney, and bone marrow transplant patients.
Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)
The Second Texas Air Quality Study (TexAQS II) was conducted in eastern Texas during 2005 and 2006. This 2-year study included an intensive field campaign, TexAQS 2006/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), conducted in August–October 2006. The results reported in this special journal section are based on observations collected on four aircraft, one research vessel, networks of ground-based air quality and meteorological (surface and radar wind profiler) sites in eastern Texas, a balloon-borne ozonesonde-radiosonde network (part of Intercontinental Transport Experiment Ozonesonde Network Study (IONS-06)), and satellites. This overview paper provides operational and logistical information for those platforms and sites, summarizes the principal findings and conclusions that have thus far been drawn from the results, and directs readers to appropriate papers for the full analysis. Two of these findings deserve particular emphasis. First, despite decreases in actual emissions of highly reactive volatile organic compounds (HRVOC) and some improvements in inventory estimates since the TexAQS 2000 study, the current Houston area emission inventories still underestimate HRVOC emissions by approximately 1 order of magnitude. Second, the background ozone in eastern Texas, which represents the minimum ozone concentration that is likely achievable through only local controls, can approach or exceed the current National Ambient Air Quality Standard of 75 ppbv for an 8-h average. These findings have broad implications for air quality control strategies in eastern Texas
From Providers to PHOs: an institutional analysis of nonprofit primary health care governance in New Zealand
Policy reforms to primary health care delivery in New Zealand required government-funded firms overseeing care delivery to be constituted as nonprofit entities with governance shared between consumer and producers. This paper examines the consumer and producer interests in the allocation of ownership and control of New Zealand firms delivering primary health care utilising theories of competition in the markets for ownership and control of firms. Consistent with pre-reform patterns of ownership and control provider interests appear to have exerted effective control over the formation and governance of the new entities in all but a few cases where community (consumer) control was already established. Their ability to do so is implied from the absence of a defined ownership stake via which the balance of governance control could shift as a consequence of changes to incentives facing the different stakeholding groups. It appears that the pre-existing patterns will prevail and further intervention will be required if policymakers are to achieve their underlying aims
Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)
Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985
Hepatic Proteomic Changes Associated with Liver Injury Caused by Alcohol Consumption in Fpr2−/− Mice
Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD. Since previous research from our team demonstrated a notable reduction in hepatic FPR2 protein levels in patients with alcohol-associated hepatitis (AH), the proteomic changes in the livers of Fpr2-/- EtOH mice were compared to those observed in patients with AH in order to identify common hepatic proteomic alterations. Several pathways linked to exacerbated ALD in Fpr2-/- EtOH mice, as well as hepatic protein changes resembling those found in patients suffering from AH, were identified. These alterations included decreased levels of coagulation factors F2 and F9, as well as reduced hepatic levels of glutamate-cysteine ligase catalytic subunit (GCLC) and total glutathione in Fpr2-/- EtOH compared to WT EtOH mice. In conclusion, the data suggest that FPR2 may play a regulatory role in hepatic blood coagulation and the antioxidant system, both in a pre-clinical model of ALD and in human AH, however further experiments are required to validate these findings
Field demonstration of simultaneous wind and temperaturemeasurements from 5to50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar
We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measurements with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Doppler lidar. Reliable winds and temperatures were obtained in the altitude range of 10-45 km with 1 km resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm telescope aperture. This edge filter with a multi-frequency lidar concept can be applied to other direct-detection Doppler lidars for profiling both wind and temperature simultaneously from the lower to the upper atmosphere
Recommended from our members
Hepatic Transcriptome and Its Regulation Following Soluble Epoxide Hydrolase Inhibition in Alcohol-Associated Liver Disease
Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease
Plastic ingestion is an underestimated cause of death for southern hemisphere albatrosses
Albatrosses are among the world’s most imperiled vertebrates, with 73% ofspecies threatenedwith extinction. Ingestion of plastic is awell-recognized threatamong threeNorth Pacific species, but lesser known in the southern hemisphere,where it is considered a minor threat. As plastic entering the ocean is increasingwhile albatross populations decline, the threat of ocean plastic to albatrosspopulations may be underestimated. We present case studies of 107 beach-castalbatrosses of twelve species, received by wildlife hospitals in Australia and NewZealand, and estimate plastic ingestion and mortality rates for albatrosses in thesouthern hemisphere. Ingested plastic was present in 5.6% of individuals, andthe cause of death in half of these cases. We estimate ingestion of plastic maycause 3.4–17.5% of nearshoremortalities and is worth consideration as a substantialthreat to albatross populations. We provide clinical findings and “checklist”methodologies for identifying potential cases of foreign-body gastrointestinalobstruction. We suggest practical policy responses, empowering decision makersto reduce albatross mortality from anthropogenic sources
- …
