17 research outputs found

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage

    IMRT of Prostate Cancer: A Comparison of Fluence Optimization with Sequential Segmentation and Direct-Step-and-Shoot Optimization

    Get PDF
    BACKGROUND AND PURPOSE: Intensity-modulated radiation therapy (IMRT) has shown its superiority to three-dimensional conformal radiotherapy in the treatment of prostate cancer. Different optimization algorithms are available: algorithms which first optimize the fluence followed by a sequencing (IM), and algorithms which involve the machine parameters directly in the optimization process (DSS). The aim of this treatment-planning study is to compare both of them regarding dose distribution and treatment time. PATIENTS AND METHODS: Ten consecutive patients with localized prostate cancer were enrolled for the planning study. The planning target volume and the rectum volume, urinary bladder and femoral heads as organs at risk were delineated. Average doses, the target dose homogeneity H, D(5), D(95), monitor units per fraction, and the number of segments were evaluated. RESULTS: While there is only a small difference in the mean doses at rectum and bladder, there is a significant advantage for the target dose homogeneity in the DSS-optimized plans compared to the IM-optimized ones. Differences in the monitor units (nearly 10% less for DSS) and the number of segments are also statistically significant and reduce the treatment time. CONCLUSION: Particularly with regard to the tumor control probability, the better homogeneity of the DSS-optimized plans is more profitable. The shorter treatment time is an improvement regarding intrafractional organ motion. The DSS optimizer results in a higher target dose homogeneity and, simultaneously, in a lower number of monitor units. Therefore, it should be preferred for IMRT of prostate cancer

    The Swedish Malignant Middle cerebral artery Infarction Study: Long-term results from a prospective study of hemicraniectomy combined with standardized neurointensive care

    No full text
    Hemicraniectomy in patients with malignant middle cerebral artery (mMCA) infarct may be life-saving. The long-term prognosis is unknown. Patients with mMCA infarct treated with hemicraniectomy between 1998 and 2002 at three hospitals were included. The criterion for surgical intervention was if the patients deteriorated from awake to being responding to painful stimuli only. All patients were followed for at least 1 year. Outcome was defined as alive/dead, walkers/non-walkers or modified Rankin Scale (mRS) score <= 2. Thirty patients were included (median age at stroke onset 49 years, range 17-67 years). Fourteen patients had mMCA infarct on the left side and 16 patients on the right side. Fourteen patients had pupil dilatation before surgery. Hemicraniectomy was performed at a median of 52 h (range 13-235 h) after stroke onset. Nine patients died within 1 month after surgery because of cerebral herniation (n = 6), myocardial infarction (n = 1) or intensive care complications (n = 2). No further deaths occurred during follow-up, which was at median 3.4 years after surgery. Status for the 21 survivors at the last follow-up was: mRS 2 or less (n = 6) and mRS 3-5 (n = 15). The oldest patient with mRS 2 or less was 53 years at stroke onset. Thirteen patients (43%) could walk without substantial aid. The long-term survival after mMCA infarction treated with hemicraniectomy seems to be favourable if the patient survives the acute phase. The outcome as measured with mRS may be better among younger patients

    IMRT for breast. A planning study

    No full text
    Background and purpose: To evaluate the performance of ten different treatment-planning systems when intensity modulated (IMRT) plans are designed for breast treatments that include the irradiation of the internal mammary chain. Patients and methods: A dataset of five patients (CT images and volumes of interest) was distributed to design IMRT plans on the ten systems. To minimise biases, the same geometry and clinical planning aims were imposed on the individual plans. Results were analysed in terms of dose distributions and dose volume histograms. Results and conclusions: For target coverage, the volume receiving more than 95% of the prescribed dose ranged from 77% (OTP) to 91% (Eclipse and Pinnacle), the volume receiving more than 107% ranged from 3.3% (Hyperion) to 23.2% (OTP). The mean dose to ipsilateral lung ranged from 13 Gy (Eclipse) to 18 Gy (OTP). The volume of the contralateral breast receiving more than 10 Gy ranged from 3% (Pinnacle) to 26% (Precise). The volume of heart receiving more than 20 Gy ranged from 7% (Eclipse) to 47% (Precise), the maximum significant dose to heart ranged from similar to 27 Gy (XiO) to similar to 49 Gy (Precise). The maximum significant dose to healthy tissue ranged from similar to 51 Gy (Eclipse) to similar to 62 Gy (OTP). It was also possible to show that the treatment geometry proposed here enables to minimise contralateral breast irradiation while keeping minimal ipsilateral lung (or heart) involvement and satisfactory target coverage. (C) 2005 Elsevier Ireland Ltd. All rights reserved

    Disease Tracking Markers for Alzheimer's Disease at the Prodromal (MCI) Stage

    No full text
    Older persons with Mild Cognitive Impairment (MCI) feature neurobiological Alzheimer's Disease (AD) in 50% to 70% of the cases and develop dementia within the next 5 to 7 years. Current evidence suggests that biochemical, neuroimaging, electrophysiological, and neuropsychological markers can track the disease over time since the MCI stage (also called prodromal AD). The amount of evidence supporting their validity is of variable strength. We have reviewed the current literature and categorized evidence of validity into three classes: Class A, availability of multiple serial studies; Class B a single serial study or multiple cross sectional studies of patients with increasing disease severity from MCI to probable AD; and class C, multiple cross sectional studies of patients in the dementia stage, not including the MCI stage. Several Class A studies suggest that episodic memory and semantic fluency are the most reliable neuropsychological markers of progression. Hippocampal atrophy, ventricular volume and whole brain atrophy are structural MRI markers with class A evidence. Resting-state fMRI and connectivity, and diffusion MR markers in the medial temporal white matter (parahippocampus and posterior cingulum) and hippocampus are promising but require further validation. Change in amyloid load in MCI patients warrant further investigations, e.g. over longer period of time, to assess its value as marker of disease progression. Several spectral markers of resting state EEG rhythms that might reflect neurodegenerative processes in the prodromal stage of AD (EEG power density, functional coupling, spectral coherence, and synchronization) suffer from lack of appropriately designed studies. Although serial studies on late event-related potentials (ERPs) in healthy elders or MCI patients are inconclusive, others tracking disease progression and effects of cholinesterase inhibiting drugs in AD, and cross-sectional including MCI or predicting development of AD offer preliminary evidence of validity as a marker of disease progression from the MCI stage. CSF Markers, such as A beta(1-42), t-tau and p-tau are valuable markers which support the clinical diagnosis of Alzheimer's disease. However, these markers are not sensitive to disease progression and cannot be used to monitor the severity of Alzheimer's disease. For Isoprostane F2 some evidence exists that its increase correlates with the progression and the severity of AD. RI Jovicich, Jorge/D-2293-201

    Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease.

    No full text
    Cortical gray matter volume and resting state cortical electroencephalographic rhythms are typically abnormal in subjects with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here we tested the hypothesis that in amnesic MCI and AD subjects, abnormalities of EEG rhythms are a functional reflection of cortical atrophy across the disease. Eyes-closed resting state EEG data were recorded in 57 healthy elderly (Nold), 102 amnesic MCI, and 108 AD patients. Cortical gray matter volume was indexed by magnetic resonance imaging recorded in the MCI and AD subjects according to Alzheimer's disease neuroimaging initiative project (http://www.adni-info.org/). EEG rhythms of interest were delta (24 Hz), theta (48 Hz), alpha1 (810.5 Hz), alpha2 (10.513 Hz), beta1 (1320 Hz), beta2 (2030 Hz), and gamma (3040 Hz). These rhythms were indexed by LORETA. Compared with the Nold, the MCI showed a decrease in amplitude of alpha 1 sources. With respect to the Nold and MCI, the AD showed an amplitude increase of delta sources, along with a strong amplitude reduction of alpha 1 sources. In the MCI and AD subjects as a whole group, the lower the cortical gray matter volume, the higher the delta sources, the lower the alpha 1 sources. The better the score to cognitive tests the higher the gray matter volume, the lower the pathological delta sources, and the higher the alpha sources. These results suggest that in amnesic MCI and AD subjects, abnormalities of resting state cortical EEG rhythms are not epiphenomena but are strictly related to neurodegeneration (atrophy of cortical gray matter) and cognition. Hum Brain Mapp, 2013. (c) 2012 Wiley Periodicals, Inc

    Consequences of eliminating adenosine A(1) receptors in mice

    No full text
    The second coding exon of the adenosine A, receptor gene was eliminated by homologous recombination. The phenotype of mice (mixed C57B6/129OlaHsd background) was studied, using siblings from matings of heterozygous mice. Among the offspring the ratio between+/+, +/-and -/-animals was 1:2:1. Over the first half-year-at least-growth and viability were the same in all genotypes. Binding of A(1) ligands was eliminated in-/-mice and halved in+/-mice. Blood pressure was increased in-/-mice and this was paralleled by an increase in plasma renin. Heart rate was unaffected, as was contractility. Furthermore, the response of the perfused heart to ischemia was similar in+/+and -/-hearts. However, remote preconditioning was eliminated in-/-mouse hearts. Tubuloglomerular feedback in the kidney was also lost in-/-mice. The analgesic response to a non-selective adenosing receptor agonist was lost in-/-mice, which also showed hyperalgesia in the tail-flick test. There was a slight hypoactivity in-/-mice, but responses to caffeine were essentially normal. The inhibition of excitatory neurotransmission in hippocampus by adenosine was lost in-/-mice and reduced in+/-mice. Responses to ATP were affected similarly. Hypoxic depression of synaptic transmission was essentially eliminated in hippocampus and hypoxic decrease in spinal respiratory neuron firing was markedly reduced. These results show that adenosine A, receptors play a physiologically important role in the kidney, spinal cord, and hippocampus and that they are critically important in the adaptive responses to hypoxia. (C) 2003 Wiley-Liss, Inc
    corecore