30,530 research outputs found

    Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c

    Get PDF
    The idea that the reduction of the strange quark suppression in string fragmentation leads to the enhancement of strange particle yield in nucleus-nucleus collisions is applied to study the singly and multiply strange particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this mechanism the strange quark suppression factor is related to the effective string tension, which increases in turn with the increase of the energy, of the centrality and of the mass of colliding system. The WA97 observation that the strange particle enhancement increases with the increasing of centrality and of strange quark content in multiply strange particles in Pb-Pb collisions with respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR

    Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry

    Full text link
    The LHC phenomenology of a low-scale gauged flavor symmetry model with inverted hierarchy is studied, through introduction of a simplified model of broken flavor symmetry. A new scalar (a flavon) and a new neutral top-philic massive gauge boson emerge with mass in the TeV range along with a new heavy fermion associated with the standard model top quark. After checking constraints from electroweak precision observables, we investigate the influence of the model on Higgs boson physics, notably on its production cross section and decay branching fractions. Limits on the flavon φ\varphi from heavy Higgs boson searches at the LHC at 7 and 8 TeV are presented. The branching fractions of the flavon are computed as a function of the flavon mass and the Higgs-flavon mixing angle. We also explore possible discovery of the flavon at 14 TeV, particularly via the φZ0Z0\varphi \rightarrow Z^0Z^0 decay channel in the 222\ell2\ell' final state, and through standard model Higgs boson pair production φhh\varphi \rightarrow hh in the bbˉγγb\bar{b}\gamma\gamma final state. We conclude that the flavon mass range up to 500500 GeV could probed down to quite small values of the Higgs-flavon mixing angle with 100 fb1^{-1} of integrated luminosity at 14 TeV.Comment: 17 pages, 14 figure

    Doping dependent charge injection and band alignment in organic field-effect transistors

    Full text link
    We have studied metal/organic semiconductor charge injection in poly(3-hexylthiophene) (P3HT) field-effect transistors with Pt and Au electrodes as a function of annealing in vacuum. At low impurity dopant densities, Au/P3HT contact resistances increase and become nonohmic. In contrast, Pt/P3HT contacts remain ohmic even at far lower doping. Ultraviolet photoemission spectroscopy (UPS) reveals that metal/P3HT band alignment shifts dramatically as samples are dedoped, leading to an increased injection barrier for holes, with a greater shift for Au/P3HT. These results demonstrate that doping can drastically alter band alignment and the charge injection process at metal/organic interfaces.Comment: 5 pages, 4 figure

    Pseudoscalar-photon Interactions, Axions, Non-Minimal Extensions, and Their Empirical Constraints from Observations

    Get PDF
    Pseudoscalar-photon interactions were proposed in the study of the relations among equivalence principles. The interaction of pseudoscalar axion with gluons was proposed as a way to solve the strong CP problem. Subsequent proposal of axion as a dark matter candidate has been a focus of search. Motivation from superstring theories add to its importance. After a brief introduction and historical review, we present (i) the current status of our optical experiment using high-finesse Fabry-Perot resonant cavity - Q & A experiment - to detect pseudoscalar-photon interactions, (ii) the constraints on pseudoscalar-photon interactions from astrophysical and cosmological observations on cosmic polarization rotation, and (iii) theoretical models of non-minimal interactions of gravitational, electromagnetic and pseudoscalar (axion) fields, and their relevance to cosmology.Comment: 8 page
    corecore