15 research outputs found

    Health Disparities Between Appalachian and Non-Appalachian Counties in Virginia USA

    Get PDF
    The examination of health disparities among people within Appalachian counties compared to people living in other counties is needed to find ways to strategically target improvements in community health in the United States of America (USA). Methods: A telephone survey of a random sample of adults living in households within communities of all counties of the state of Virginia (VA) in the USA was conducted. Findings: Health status was poorer among those in communities within Appalachian counties in VA and health insurance did not make a difference. Health perception was significantly worse in residents within communities in Appalachian counties compared to non-Appalachian community residents (30.5 vs. 17.4% rated their health status as poor/fair), and was worse even among those with no chronic diseases. Within communities in Appalachian counties, black residents report significantly better health perception than do white residents. Conclusion: Residents living in communities in Appalachian counties in VA are not receiving adequate health care, even among those with health insurance. More research with a larger ethnic minority sample is needed to investigate the racial/ethnic disparities in self-reported health and health care utilization within communities

    Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.

    Get PDF
    BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice

    Type 1 diabetes: translating mechanistic observations into effective clinical outcomes

    Full text link
    Type 1 diabetes remains an important health problem, particularly in Western countries where the incidence has been increasing in younger children(1). In 1986, Eisenbarth described Type 1 diabetes as a chronic autoimmune disease. Work over the past 3 ½ decades has identified many of the genetic, immunologic, and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Based on these findings, clinical trials have been conducted to test these hypotheses but have had mixed results. In this review, we discuss the findings that have led to current concepts of the disease mechanisms, how this understanding has prompted clinical studies, and the results of these studies. The findings from preclinical and clinical studies support the original proposed model for how type 1 diabetes develops, but have also suggested that this disease is more complex than originally thought and will require broader treatment approaches
    corecore