968 research outputs found
Superconducting Gap and Pseudogap in Bi-2212
We present results of Raman scattering experiments in differently doped
Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in
the whole doping range. The low frequency power laws confirm the existence of a
-wave order parameter. In the normal state between Tc and T* =
200K we find evidence for a pseudogap in B2g symmetry. Upon doping its effect
on the spectra decreases while its energy scale appears to be unchanged.Comment: 2 pages, 1 EPS figure; LT22 Proceedings to appear in Physica
Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates
We consider the lightly doped cuprates YCaBaCuO
and LaSrCuO (with ,0.04), where the presence of a
fluctuating nematic state has often been proposed as a precursor of the stripe
(or, more generically, charge-density wave) phase, which sets in at higher
doping. We phenomenologically assume a quantum critical character for the
longitudinal and transverse nematic, and for the charge-ordering fluctuations,
and investigate the effects of these fluctuations in Raman spectra. We find
that the longitudinal nematic fluctuations peaked at zero transferred momentum
account well for the anomalous Raman absorption observed in these systems in
the channel, while the absence of such effect in the channel
may be due to the overall suppression of Raman response at low frequencies,
associated with the pseudogap. While in YCaBaCuO the
low-frequency lineshape is fully accounted by longitudinal nematic collective
modes alone, in LaSrCuO also charge-ordering modes with finite
characteristic wavevector are needed to reproduce the shoulders observed in the
Raman response. This different involvement of the nearly critical modes in the
two materials suggests a different evolution of the nematic state at very low
doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201
Spectral signatures of critical charge and spin fluctuations in cuprates
We discuss how Raman spectra of high temperature superconducting cuprates are
affected by nearly-critical spin and charge collective modes, which are coupled
to charge carriers near a stripe quantum critical point. We find that specific
fingerprints of nearly-critical collective modes can be observed and that the
selectivity of Raman spectroscopy in momentum space may be exploited to
distinguish the spin and charge contribution. We apply our results to discuss
the spectra of high-T_c superconducting cuprates finding that the collective
modes should have masses with substantial temperature dependence in agreement
with their nearly critical character. Moreover spin modes have larger masses
and are more diffusive than charge modes indicating that in stripes the charge
is nearly ordered, while spin modes are strongly overdamped and fluctuating
with high frequency.Comment: 6 pages and 3 figures, invited paper to the conference SCES 08,
Buzios/Rio, Brazi
Electron-boson glue function derived from electronic Raman scattering
Raman scattering cross sections depend on photon polarization. In the
cuprates nodal and antinodal directions are weighted more strongly in
and symmetry, respectively. On the other hand in angle-resolved
photoemission spectroscopy (ARPES), electronic properties are measured along
well-defined directions in momentum space rather than their weighted averages.
In contrast, the optical conductivity involves a momentum average over the
entire Brillouin zone. Newly measured Raman response data on high-quality
BiSrCaCuO single crystals up to high energies have
been inverted using a modified maximum entropy inversion technique to extract
from and Raman data corresponding electron-boson spectral
densities (glue) are compared to the results obtained with known ARPES and
optical inversions. We find that the spectrum agrees qualitatively
with nodal direction ARPES while the looks more like the optical
spectrum. A large peak around meV in , much less prominent
in , is taken as support for the importance of scattering
at this frequency.Comment: 7 pages, 3 figure
Band and momentum dependent electron dynamics in superconducting as seen via electronic Raman scattering
We present details of carrier properties in high quality single crystals obtained from electronic Raman
scattering. The experiments indicate a strong band and momentum anisotropy of
the electron dynamics above and below the superconducting transition
highlighting the importance of complex band-dependent interactions. The
presence of low energy spectral weight deep in the superconducting state
suggests a gap with accidental nodes which may be lifted by doping and/or
impurity scattering. When combined with other measurements, our observation of
band and momentum dependent carrier dynamics indicate that the iron arsenides
may have several competing superconducting ground states.Comment: 5 pages, 4 figure
A balancing act: Evidence for a strong subdominant d-wave pairing channel in
We present an analysis of the Raman spectra of optimally doped based on LDA band structure calculations and the
subsequent estimation of effective Raman vertices. Experimentally a narrow,
emergent mode appears in the () Raman spectra only below
, well into the superconducting state and at an energy below twice the
energy gap on the electron Fermi surface sheets. The Raman spectra can be
reproduced quantitatively with estimates for the magnitude and momentum space
structure of the s pairing gap on different Fermi surface sheets, as
well as the identification of the emergent sharp feature as a
Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a
subdominant channel. The binding energy of the exciton relative
to the gap edge shows that the coupling strength in this subdominant
channel is as strong as 60% of that in the dominant
channel. This result suggests that may be the dominant pairing
symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure
Electron interactions and charge ordering in LaSrCuO
We present results of inelastic light scattering experiments on
single-crystalline LaSrCuO in the doping range and TlBaCuO at and . The main
emphasis is placed on the response of electronic excitations in the
antiferromagnetic phase, in the pseudogap range, in the superconducting state,
and in the essentially normal metallic state at , where no
superconductivity could be observed. In most of the cases we compare B
and B spectra which project out electronic properties close to
and , respectively. In the channel of electron-hole excitations
we find universal behavior in B symmetry as long as the material
exhibits superconductivity at low temperature. In contrast, there is a strong
doping dependence in B symmetry: (i) In the doping range we observe rapid changes of shape and temperature dependence of the
spectra. (ii) In LaSrCuO new structures appear for
which are superposed on the electron-hole continuum. The temperature dependence
as well as model calculations support an interpretation in terms of
charge-ordering fluctuations. For the response from fluctuations
disappears at B and appears at B symmetry in full agreement with
the orientation change of stripes found by neutron scattering. While, with a
grain of salt, the particle-hole continuum is universal for all cuprates the
response from fluctuating charge order in the range is so
far found only in LaSrCuO. We conclude that
LaSrCuO is close to static charge order and, for this reason,
may have a suppressed .Comment: 17 pages, 15 figure
Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order
The Nernst effect has recently proven a sensitive probe for detecting unusual
normal state properties of unconventional superconductors. In particular, it
may sensitively detect Fermi surface reconstructions which are connected to a
charge or spin density wave (SDW) ordered state, and even fluctuating forms of
such a state. Here we summarize recent results for the Nernst effect of the
iron pnictide superconductor , whose ground state evolves
upon doping from an itinerant SDW to a superconducting state, and the cuprate
superconductor which exhibits static stripe
order as a ground state competing with the superconductivity. In , the SDW order leads to a huge Nernst response, which allows
to detect even fluctuating SDW precursors at superconducting doping levels
where long range SDW order is suppressed. This is in contrast to the impact of
stripe order on the normal state Nernst effect in . Here, though signatures of the stripe order are
detectable in the temperature dependence of the Nernst coefficient, its overall
temperature dependence is very similar to that of ,
where stripe order is absent. The anomalies which are induced by the stripe
order are very subtle and the enhancement of the Nernst response due to static
stripe order in as compared to that of the
pseudogap phase in , if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric
materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO
Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO
Science for Peace and Security Series B: Physics and Biophysics, (Springer
Science+Business Media B.V. 2012
Pinpointing Gap Minima in Ba(FeCoAs \textit{via} Band Structure Calculations and Electronic Raman Scattering
A detailed knowledge of the gap structure for the Fe-pnictide superconductors
is still rather rudimentary, with several conflicting reports of either nodes,
deep gap minima, or fully isotropic gaps on the Fermi surface sheets, both in
the plane and along the c-axis. In this paper we present
considerations for electronic Raman scattering which can help clarify the gap
structure and topology using different light scattering geometries. Using
density functional calculations for the Raman vertices, it is shown that the
location of the gap minima may occur on loops stretching over a portion of the
c-axis in Ba(FeCoAs.Comment: 4+ pages, three figure
- …
