2,064 research outputs found

    Spectroscopy on two coupled flux qubits

    Full text link
    We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a σ1zσ2z\sigma_1^z\sigma_2^z interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the magnetic field applied we observe the coupling of the qubits. The coupling strength agrees well with calculations of the mutual inductance

    Optimal trap shape for a Bose gas with attractive interactions

    Full text link
    Dilute Bose gas with attractive interactions is considered at zero temperature, when practically all atoms are in Bose-Einstein condensate. The problem is addressed aiming at answering the question: What is the optimal trap shape allowing for the condensation of the maximal number of atoms with negative scattering lengths? Simple and accurate analytical formulas are derived allowing for an easy analysis of the optimal trap shapes. These analytical formulas are the main result of the paper.Comment: Latex file, 21 page

    Hot nuclear matter with dilatons

    Get PDF
    We study hot nuclear matter in a model based on nucleon interactions deriving from the exchange of scalar and vector mesons. The main new feature of our work is the treatment of the scale breaking of quantum chromodynamics through the introduction of a dilaton field. Although the dilaton effects are quite small quantitatively, they affect the high-temperature phase transition appreciably. We find that inclusion of the dilaton leads to a metastable high-density state at zero pressure, similar to that found by Glendenning who considered instead the admixture of higher baryon resonances.Comment: 10 pages, LaTeX with equation.sty (optional) and epsfig.sty, 11 figures packed with uufiles. Final, published version (small changes from original preprint

    Differential flow in heavy-ion collisions at balance energies

    Full text link
    A strong differential transverse collective flow is predicted for the first time to occur in heavy-ion collisions at balance energies. We also give a novel explanation for the disappearance of the total transverse collective flow at the balance energies. It is further shown that the differential flow especially at high transverse momenta is a useful microscope capable of resolving the balance energy's dual sensitivity to both the nuclear equation of state and in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres

    Ubiquity of optical activity in planar metamaterial scatterers

    Get PDF
    Recently it was discovered that periodic lattices of metamaterial scatterers show optical activity, even if the scatterers or lattice show no 2D or 3D chirality, if the illumination breaks symmetry. In this Letter we demonstrate that such `pseudo-chirality' is intrinsic to any single planar metamaterial scatterer and in fact has a well-defined value at a universal bound. We argue that in any circuit model, a nonzero electric and magnetic polarizability derived from a single resonance automatically imply strong bianisotropy, i.e., magneto-electric cross polarizability at the universal bound set by energy conservation. We confirm our claim by extracting polarizability tensors and cross sections for handed excitation from transmission measurements on near-infrared split ring arrays, and electrodynamic simulations for diverse metamaterial scatterers.Comment: 5 pages, 4 figure

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Condensation of Ideal Bose Gas Confined in a Box Within a Canonical Ensemble

    Full text link
    We set up recursion relations for the partition function and the ground-state occupancy for a fixed number of non-interacting bosons confined in a square box potential and determine the temperature dependence of the specific heat and the particle number in the ground state. A proper semiclassical treatment is set up which yields the correct small-T-behavior in contrast to an earlier theory in Feynman's textbook on Statistical Mechanics, in which the special role of the ground state was ignored. The results are compared with an exact quantum mechanical treatment. Furthermore, we derive the finite-size effect of the system.Comment: 18 pages, 8 figure

    Microscopic Calculation of in-Medium Proton-Proton Cross Sections

    Full text link
    We derive in-medium PROTON-PROTON cross sections in a microscopic model based upon the Bonn nucleon-nucleon potential and the Dirac-Brueckner approach for nuclear matter. We demonstrate the difference between proton-proton and neutron-proton cross sections and point out the need to distinguish carefully between the two cases. We also find substantial differences between our in-medium cross sections and phenomenological parametrizations that are commonly used in heavy-ion reactions.Comment: 9 pages of RevTex and 4 figures (postscript in separate uuencoded file), UI-NTH-930

    Relative momentum for identical particles

    Full text link
    Possible definitions for the relative momentum of identical particles are considered

    Spin superfluidity and spin-orbit gauge symmetry fixing

    Full text link
    The Hamiltonian describing 2D electron gas, in a spin-orbit active medium, can be cast into a consistent non-Abelian gauge field theory leading to a proper definition of the spin current. The generally advocated gauge symmetric version of the theory results in current densities that are gauge covariant, a fact that poses severe concerns on their physical nature. We show that in fact the problem demands gauge fixing, leaving no room to ambiguity in the definition of physical spin currents. Gauge fixing also allows for polarized edge excitations not present in the gauge symmetric case. The scenario here is analogous to that of superconductivity gauge theory. We develop a variational formulation that accounts for the constraints between U(1) physical fields and SU(2) gauge fields and show that gauge fixing renders a physical matter and radiation currents and derive the particular consequences for the Rashba SO interaction.Comment: to appear in EP
    corecore