1,626 research outputs found
What drives the dust activity of comet 67P/Churyumov-Gerasimenko?
We use the gravitational instability formation scenario of cometesimals to
derive the aggregate size that can be released by the gas pressure from the
nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances
and different volatile ices. To derive the ejected aggregate sizes, we
developed a model based on the assumption that the entire heat absorbed by the
surface is consumed by the sublimation process of one volatile species. The
calculations were performed for the three most prominent volatile materials in
comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of
the dust aggregates able to escape from the nucleus into space widens when the
comet approaches the Sun and narrows with increasing heliocentric distance,
because the tensile strength of the aggregates decreases with increasing
aggregate size. The activity of CO ice in comparison to H_20 ice is capable to
detach aggregates smaller by approximately one order of magnitude from the
surface. As a result of the higher sublimation rate of CO ice, larger
aggregates are additionally able to escape from the gravity field of the
nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in
radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been
observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7
AU. Furthermore, the model predicts the release of decimeter-sized aggregates
(trail particles) close to the heliocentric distance at which the gas-driven
dust activity vanishes. However, the gas-driven dust activity cannot explain
the presence of particles smaller than ~1 mm in the coma because the high
tensile strength required to detach these particles from the surface cannot be
provided by evaporation of volatile ices. These smaller particles can be
produced for instance by spin-up and centrifugal mass loss of ejected larger
aggregates
Thermophysical properties of near-Earth asteroid (341843) 2008 EV5 from WISE data
Aims. To derive the thermal inertia of 2008 EV, the baseline target for
the Marco Polo-R mission proposal, and infer information about the size of the
particles on its surface. Methods. Values of thermal inertia are obtained by
fitting an asteroid thermophysical model to NASA's Wide-field Infrared Survey
Explorer (WISE) infrared data. From the constrained thermal inertia and a model
of heat conductivity that accounts for different values of the packing fraction
(a measure of the degree of compaction of the regolith particles), grain size
is derived. Results. We obtain an effective diameter , geometric visible albedo (assuming
), and thermal inertia J/m2/s(1/2)/K at
the 1- level of significance for its retrograde spin pole solution. The
regolith particles radius is mm for low degrees of
compaction, and mm for the highest packing densities.Comment: 16 pages, 8 figures; accepted for publication in Astronomy &
Astrophysic
On free evolution of self gravitating, spherically symmetric waves
We perform a numerical free evolution of a selfgravitating, spherically
symmetric scalar field satisfying the wave equation. The evolution equations
can be written in a very simple form and are symmetric hyperbolic in
Eddington-Finkelstein coordinates. The simplicity of the system allow to
display and deal with the typical gauge instability present in these
coordinates. The numerical evolution is performed with a standard method of
lines fourth order in space and time. The time algorithm is Runge-Kutta while
the space discrete derivative is symmetric (non-dissipative). The constraints
are preserved under evolution (within numerical errors) and we are able to
reproduce several known results.Comment: 15 pages, 15 figure
Late Time Tail of Wave Propagation on Curved Spacetime
The late time behavior of waves propagating on a general curved spacetime is
studied. The late time tail is not necessarily an inverse power of time. Our
work extends, places in context, and provides understanding for the known
results for the Schwarzschild spacetime. Analytic and numerical results are in
excellent agreement.Comment: 11 pages, WUGRAV-94-1
Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique
We report on single crystal high mobility organic field-effect transistors
(OFETs) prepared on prefabricated substrates using a "flip-crystal" approach.
This method minimizes crystal handling and avoids direct processing of the
crystal that may degrade the FET electrical characteristics. A chemical
treatment process for the substrate ensures a reproducible device quality. With
limited purification of the starting materials, hole mobilities of 10.7, 1.3,
and 1.4 cm^2/Vs have been measured on rubrene, tetracene, and pentacene single
crystals, respectively. Four-terminal measurements allow for the extraction of
the "intrinsic" transistor channel resistance and the parasitic series contact
resistances. The technique employed in this study shows potential as a general
method for studying charge transport in field-accumulated carrier channels near
the surface of organic single crystals.Comment: 26 pages, 7 figure
Binary Black Hole Mergers in 3d Numerical Relativity
The standard approach to the numerical evolution of black hole data using the
ADM formulation with maximal slicing and vanishing shift is extended to
non-symmetric black hole data containing black holes with linear momentum and
spin by using a time-independent conformal rescaling based on the puncture
representation of the black holes. We give an example for a concrete three
dimensional numerical implementation. The main result of the simulations is
that this approach allows for the first time to evolve through a brief period
of the merger phase of the black hole inspiral.Comment: 8 pages, 9 figures, REVTeX; expanded discussion, results unchange
Dimension-Dependence of the Critical Exponent in Spherically Symmetric Gravitational Collapse
We study the critical behaviour of spherically symmetric scalar field
collapse to black holes in spacetime dimensions other than four. We obtain
reliable values for the scaling exponent in the supercritical region for
dimensions in the range . The critical exponent increases
monotonically to an asymptotic value at large of . The
data is well fit by a simple exponential of the form: .Comment: 5 pages, including 7 figures New version contains more data points,
one extra graph and more accurate error bars. No changes to result
- …
