3,226 research outputs found

    Biological processes modelling for MBR systems: A review of the state-of-the-art focusing on SMP and EPS

    Get PDF
    A mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS. Even though several studies have been published regarding SMP modelling, there still needs to be more information due to the highly complicated SMP nature to facilitate the accurate modelling of membrane fouling. The EPS group has seldom been addressed in the literature, probably due to the knowledge deficiency concerning the triggers for production and degradation pathways in MBR systems, which require further efforts. Finally, the successful model applications showed that proper estimation of SMP and EPS by modelling approaches could optimise membrane fouling, which can influence the MBR energy consumption, operating costs, and greenhouse gas emissions

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore