230 research outputs found

    Self-consistent triaxial de Zeeuw-Carollo Models

    Full text link
    We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical γ\gamma-models of Dehnen whose densities vary as rγr^{-\gamma} near the center and r4r^{-4} at large radii and hence, possess a central density core for γ=0\gamma=0 and cusps for γ>0\gamma > 0. We consider four triaxial models from ZC96, two prolate triaxials: (p,q)=(0.65,0.60)(p, q) = (0.65, 0.60) with γ=1.0\gamma = 1.0 and 1.5, and two oblate triaxials: (p,q)=(0.95,0.60)(p, q) = (0.95, 0.60) with γ=1.0\gamma = 1.0 and 1.5. We compute 4500 orbits in each model for time periods of 105TD10^{5} T_{D}. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for 103TD\sim 10^{3} T_{D} or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with γ=1.0\gamma =1.0, our attempts to construct self-consistent solutions employing only the regular orbits fail for the remaining three models. However, the self-consistent solutions are found to exist for all models when the stochastic and regular orbits are treated in the same way because the mixing-time, 104TD\sim10^{4} T_{D}, is shorter than the integration time, 105TD10^{5} T_{D}. Moreover, the ``fully-mixed'' solutions can also be constructed for all models when the stochastic orbits are fully mixed at 15 lowest energy shells. Thus, we conclude that the self-consistent solutions exist for our selected prolate and oblate triaxial models with γ=1.0\gamma = 1.0 and 1.5.Comment: 6 Pages, 3 Figures, 2 Tables. Accepted for Publication in A&

    On the Mass-Period Distributions and Correlations of Extrasolar Planets

    Full text link
    In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.Comment: to be published in AJ, tentatively in December 200

    Evidence of ratchet effect in nanowires of a conducting polymer

    Get PDF
    Ratchet effect, observed in many systems starting from living organism to artificially designed device, is a manifestation of motion in asymmetric potential. Here we report results of a conductivity study of Polypyrrole nanowires, which have been prepared by a simple method to generate a variation of doping concentration along the length. This variation gives rise to an asymmetric potential profile that hinders the symmetry of the hopping process of charges and hence the value of measured resistance of these nanowires become sensitive to the direction of current flow. The asymmetry in resistance was found to increase with decreasing nanowire diameter and increasing temperature. The observed phenomena could be explained with the assumption that the spatial extension of localized state involved in hopping process reduces as the doping concentration reduces along the length of the nanowires.Comment: Revtex, two column, 4 pages, 10 figure

    Corrections to Chiral Dynamics of Heavy Hadrons: (I) 1/M Correction

    Full text link
    In earlier publications we have analyzed the strong and radiative decays of heavy hadrons in a formalism which incorporates both heavy-quark and chiral symmetries. In particular, we have derived a heavy-hadron chiral Lagrangian whose coupling constants are related by the heavy-quark flavor-spin symmetry arising from the QCD Lagrangian with infinitely massive quarks. In this paper, we re-examine the structure of the above chiral Lagrangian by including the effects of 1/mQ1/m_Q corrections in the heavy quark effective theory. The relations among the coupling constants, originally derived in the heavy-quark limit, are modified by heavy quark symmetry breaking interactions in QCD. Some of the implications are discussed.Comment: PHYZZX, 45 pages, 1 figure (not included), CLNS 93/1192, IP-ASTP-02-93, ITP-SB-93-0

    Effect of Central Mass Concentration on the Formation of Nuclear Spirals in Barred Galaxies

    Full text link
    We have performed smoothed particle hydrodynamics (SPH) simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of the three axisymmetric components (halo, disk, and bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ\gamma-models of Dehnen is adopted for the bulge component whose density varies as rγr^{-\gamma} near the center and r4r^{-4} at larger radiiand hence, possesses a central density core for γ=0\gamma = 0 and cusps for γ>0\gamma > 0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ\gamma, we have examined here the effect of the central mass concentration by varying the cusp parameter γ\gamma on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ=0\gamma = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ=1\gamma=1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies changes from the hydrodynamic shocks to the gas density waves when the central mass concentration increases from γ=0\gamma = 0 to 1.5.Comment: 29 pages, 5 figures (Color Figures 3-5), Accepted for Publication in Astrophysical Journal (ApJ

    Chiral Lagrangians for Radiative Decays of Heavy Hadrons

    Full text link
    The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorporates both the heavy quark symmetry and the chiral symmetry. The chiral Lagrangians for the electromagnetic interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the heavy baryons and mesons. Due to the heavy quark spin symmetry, the latter contains only one independent coupling constant in the meson sector and two in the baryon sector. These coupling constants only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the charm quark is not heavy enough and the contribution from its magnetic moment must be included. Applications to the radiative decays DDγ , BBγ , ΞcΞcγ ,ΣcΛcγD^\ast \rightarrow D \gamma~,~B^\ast \rightarrow B \gamma~,~ \Xi^\prime_c \rightarrow \Xi_c \gamma~, \Sigma_c \rightarrow \Lambda_c \gamma and ΣcΛcπγ\Sigma_c \rightarrow \Lambda_c \pi \gamma are given. Together with our previous results on the strong decay rates of DDπD^\ast \rightarrow D \pi and ΣcΛcπ\Sigma_c \rightarrow \Lambda_c \pi, predictions are obtained for the total widths and branching ratios of DD^\ast and Σc\Sigma_c. The decays Σc+Λc+π0γ\Sigma^+_c \rightarrow \Lambda^+_c \pi^0 \gamma and Σc0Λc+πγ\Sigma^0_c \rightarrow \Lambda^+_c \pi^- \gamma are discussed to illustrate the important roles played by both the heavy quark symmetry and the chiral symmetry.Comment: 30 pages (one figure, available on request), CLNS 92/1158 and IP-ASTP-13-9

    Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons

    Full text link
    Motivated by the observation of the decay BˉKˉγ\bar{B}\to \bar{K}^*\gamma by CLEO, we have systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There exist two types of weak radiative decays: One proceeds through the short-distance bsγb\to s\gamma transition and the other occurs through WW-exchange accompanied by a photon emission. Effective Lagrangians are derived for the WW-exchange bremsstrahlung processes at the quark level and then applied to various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of Bˉ0D0γ, Λb0Σc0γ, Ξb0Ξc0γ\bar{B}^0\to D^{*0} \gamma,~\Lambda_b^0\to\Sigma_c^0\gamma,~\Xi_b^0\to \Xi_c^0\gamma and \Xi_b^0\to\xip_c^0\gamma are given. In particular, we found B(Bˉ0D0γ)0.9×106{\cal B}(\bar{B}^0 \to D^{*0}\gamma)\approx 0.9\times 10^{-6}. Order of magnitude estimates for the weak radiative decays of charmed hadrons:  D0Kˉ0γ, Λc+Σ+γ~D^0\to \bar{K}^{*0}\gamma,~\Lambda_c^+\to\Sigma^+\gamma and Ξc0Ξ0γ\Xi_c^0\to\Xi^0\gamma are also presented. Within this approach, the decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely predicted by heavy quark symmetry. The electromagnetic penguin contribution to Λb0Λγ\Lambda_b^0\to\Lambda\gamma is estimated by two different methods and its branching ratio is found to be of order 1×1051\times 10^{-5}. We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance bsγb\to s\gamma mechanism.Comment: 28 pages + 3 figures (not included), CLNS 94/1278, IP-ASTP-04-94. [Main changes in this revised version: (i) Sect 2 and subsection 4.1 are revised, (ii) A MIT bag method for calculating the decay rate of LambdabΛ+gammaLambda_b \to\Lambda+gamma is presented, (iii) All predictions are updated using the newly available 1994 Particle Data Group, and (iv) Appendix and subsections 3.3 and 4.4 are deleted.

    Phenomenology of Higgs bosons in the Zee-Model

    Get PDF
    To generate small neutrino masses radiatively, the Zee-model introduces two Higgs doublets and one weak-singlet charged Higgs boson to its Higgs sector. From analyzing the renormalization group equations, we determine the possibile range of the lightest CP-even Higgs boson (hh) mass and the Higgs boson self-couplings as a function of the cut-off scale beyond which either some of the coupling constants are strong enough to invalidate the perturbative analysis or the stability of the electroweak vacuum is no longer guaranteed. Using the results obtained from the above analysis, we find that the singlet charged Higgs boson can significantly modify the partial decay width of hγγh \to \gamma \gamma via radiative corrections, and its collider phenomenology can also be drastically different from that of the charged Higgs bosons in the usual two-Higgs-doublet models.Comment: Added a paragraph and a figure in Section V, corrected typos, added references. (RevTeX, 45 pages, 16 figures included.) To appear in Physical Review
    corecore