579 research outputs found
Dynamical Ordering of Driven Stripe Phases in Quenched Disorder
We examine the dynamics and stripe formation in a system with competing short
and long range interactions in the presence of both an applied dc drive and
quenched disorder. Without disorder, the system forms stripes organized in a
labyrinth state. We find that, when the disorder strength exceeds a critical
value, an applied dc drive can induce a dynamical stripe ordering transition to
a state that is more ordered than the originating undriven, unpinned pattern.
We show that signatures in the structure factor and transport properties
correspond to this dynamical reordering transition, and we present the dynamic
phase diagram as a function of strengths of disorder and dc drive.Comment: 4 pages, 4 postscript figure
Uniqueness of Bessel models: the archimedean case
In the archimedean case, we prove uniqueness of Bessel models for general
linear groups, unitary groups and orthogonal groups.Comment: 22 page
Elasticity Theory and Shape Transitions of Viral Shells
Recently, continuum elasticity theory has been applied to explain the shape
transition of icosahedral viral capsids - single-protein-thick crystalline
shells - from spherical to buckled/faceted as their radius increases through a
critical value determined by the competition between stretching and bending
energies of a closed 2D elastic network. In the present work we generalize this
approach to capsids with non-icosahedral symmetries, e.g., spherocylindrical
and conical shells. One key new physical ingredient is the role played by
nonzero spontaneous curvature. Another is associated with the special way in
which the energy of the twelve topologically-required five-fold sites depends
on the background local curvature of the shell in which they are embedded.
Systematic evaluation of these contributions leads to a shape phase diagram in
which transitions are observed from icosahedral to spherocylindrical capsids as
a function of the ratio of stretching to bending energies and of the
spontaneous curvature of the 2D protein network. We find that the transition
from icosahedral to spherocylindrical symmetry is continuous or weakly
first-order near the onset of buckling, leading to extensive shape degeneracy.
These results are discussed in the context of experimentally observed
variations in the shapes of a variety of viral capsids.Comment: 53 pages, 17 figure
Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface
Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte
(PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant
concentrations show that minute surfactant concentrations induce the formation
of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity
and grazing angle X-ray diffraction (GIXD) provide detailed information of the
top most layer, where it is found that the surfactant forms a two-dimensional
liquid-like monolayer, with a noticeable disruption of the structure of water
at the interface. With the addition of salt (NaCl) columnar-crystals with
distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure
Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran
We present an experimental study of the isotropic-nematic phase transition in
an aqueous mixture of charged semi-flexible rods (fd virus) and neutral polymer
(Dextran). A complete phase diagram is measured as a function of ionic strength
and polymer molecular weight. At high ionic strength we find that adding
polymer widens the isotropic-nematic coexistence region with polymers
preferentially partitioning into the isotropic phase, while at low ionic
strength the added polymer has no effect on the phase transition. The nematic
order parameter is determined from birefringence measurements and is found to
be independent of polymer concentration (or equivalently the strength of
attraction). The experimental results are compared with the existing
theoretical predictions for the isotropic-nematic transition in rods with
attractive interactions.Comment: 8 Figures. To be published in Phys. Rev. E. For more information see
http://www.elsie.brandeis.ed
Precision medicine for suicidality: from universality to subtypes and personalization
Suicide remains a clear, present and increasing public health problem, despite being a potentially preventable tragedy. Its incidence is particularly high in people with overt or un(der)diagnosed psychiatric disorders. Objective and precise identification of individuals at risk, ways of monitoring response to treatments and novel preventive therapeutics need to be discovered, employed and widely deployed. We sought to investigate whether blood gene expression biomarkers for suicide (that is, a ‘liquid biopsy’ approach) can be identified that are more universal in nature, working across psychiatric diagnoses and genders, using larger cohorts than in previous studies. Such markers may reflect and/or be a proxy for the core biology of suicide. We were successful in this endeavor, using a comprehensive stepwise approach, leading to a wealth of findings. Steps 1, 2 and 3 were discovery, prioritization and validation for tracking suicidality, resulting in a Top Dozen list of candidate biomarkers comprising the top biomarkers from each step, as well as a larger list of 148 candidate biomarkers that survived Bonferroni correction in the validation step. Step 4 was testing the Top Dozen list and Bonferroni biomarker list for predictive ability for suicidal ideation (SI) and for future hospitalizations for suicidality in independent cohorts, leading to the identification of completely novel predictive biomarkers (such as CLN5 and AK2), as well as reinforcement of ours and others previous findings in the field (such as SLC4A4 and SKA2). Additionally, we examined whether subtypes of suicidality can be identified based on mental state at the time of high SI and identified four potential subtypes: high anxiety, low mood, combined and non-affective (psychotic). Such subtypes may delineate groups of individuals that are more homogenous in terms of suicidality biology and behavior. We also studied a more personalized approach, by psychiatric diagnosis and gender, with a focus on bipolar males, the highest risk group. Such a personalized approach may be more sensitive to gender differences and to the impact of psychiatric co-morbidities and medications. We compared testing the universal biomarkers in everybody versus testing by subtypes versus personalized by gender and diagnosis, and show that the subtype and personalized approaches permit enhanced precision of predictions for different universal biomarkers. In particular, LHFP appears to be a strong predictor for suicidality in males with depression. We also directly examined whether biomarkers discovered using male bipolars only are better predictors in a male bipolar independent cohort than universal biomarkers and show evidence for a possible advantage of personalization. We identified completely novel biomarkers (such as SPTBN1 and C7orf73), and reinforced previously known biomarkers (such as PTEN and SAT1). For diagnostic ability testing purposes, we also examined as predictors phenotypic measures as apps (for suicide risk (CFI-S, Convergent Functional Information for Suicidality) and for anxiety and mood (SASS, Simplified Affective State Scale)) by themselves, as well as in combination with the top biomarkers (the combination being our a priori primary endpoint), to provide context and enhance precision of predictions. We obtained area under the curves of 90% for SI and 77% for future hospitalizations in independent cohorts. Step 5 was to look for mechanistic understanding, starting with examining evidence for the Top Dozen and Bonferroni biomarkers for involvement in other psychiatric and non-psychiatric disorders, as a mechanism for biological predisposition and vulnerability. The biomarkers we identified also provide a window towards understanding the biology of suicide, implicating biological pathways related to neurogenesis, programmed cell death and insulin signaling from the universal biomarkers, as well as mTOR signaling from the male bipolar biomarkers. In particular, HTR2A increase coupled with ARRB1 and GSK3B decreases in expression in suicidality may provide a synergistic mechanistical corrective target, as do SLC4A4 increase coupled with AHCYL1 and AHCYL2 decrease. Step 6 was to move beyond diagnostics and mechanistical risk assessment, towards providing a foundation for personalized therapeutics. Items scored positive in the CFI-S and subtypes identified by SASS in different individuals provide targets for personalized (psycho)therapy. Some individual biomarkers are targets of existing drugs used to treat mood disorders and suicidality (lithium, clozapine and omega-3 fatty acids), providing a means toward pharmacogenomics stratification of patients and monitoring of response to treatment. Such biomarkers merit evaluation in clinical trials. Bioinformatics drug repurposing analyses with the gene expression biosignatures of the Top Dozen and Bonferroni-validated universal biomarkers identified novel potential therapeutics for suicidality, such as ebselen (a lithium mimetic), piracetam (a nootropic), chlorogenic acid (a polyphenol) and metformin (an antidiabetic and possible longevity promoting drug). Finally, based on the totality of our data and of the evidence in the field to date, a convergent functional evidence score prioritizing biomarkers that have all around evidence (track suicidality, predict it, are reflective of biological predisposition and are potential drug targets) brought to the fore APOE and IL6 from among the universal biomarkers, suggesting an inflammatory/accelerated aging component that may be a targetable common denominator
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
Soft quasicrystals - Why are they stable?
In the last two years we have witnessed the exciting experimental discovery
of soft matter with nontrivial quasiperiodic long-range order - a new form of
matter termed a soft quasicrystal. Two groups have independently discovered
such order in soft matter: Zeng et al. [Nature 428 (2004) 157] in a system of
dendrimer liquid crystals; and Takano et al. [J. Polym. Sci. Polym. Phys. 43
(2005) 2427] in a system of ABC star-shaped polymers. These newly discovered
soft quasicrystals not only provide exciting platforms for the fundamental
study of both quasicrystals and of soft matter, but also hold the promise for
new applications based on self-assembled nanomaterials with unique physical
properties that take advantage of the quasiperiodicity, such as complete and
isotropic photonic band-gap materials. Here we provide a concise review of the
emerging field of soft quasicrystals, suggesting that the existence of two
natural length-scales, along with 3-body interactions, may constitute the
underlying source of their stability
Light scattering spectra of supercooled molecular liquids
The light scattering spectra of molecular liquids are derived within a
generalized hydrodynamics. The wave vector and scattering angle dependences are
given in the most general case and the change of the spectral features from
liquid to solidlike is discussed without phenomenological model assumptions for
(general) dielectric systems without long-ranged order. Exact microscopic
expressions are derived for the frequency-dependent transport kernels,
generalized thermodynamic derivatives and the background spectra.Comment: 12 page
Counterion Condensation and Fluctuation-Induced Attraction
We consider an overall neutral system consisting of two similarly charged
plates and their oppositely charged counterions and analyze the electrostatic
interaction between the two surfaces beyond the mean-field Poisson-Boltzmann
approximation. Our physical picture is based on the fluctuation-driven
counterion condensation model, in which a fraction of the counterions is
allowed to ``condense'' onto the charged plates. In addition, an expression for
the pressure is derived, which includes fluctuation contributions of the whole
system. We find that for sufficiently high surface charges, the distance at
which the attraction, arising from charge fluctuations, starts to dominate can
be large compared to the Gouy-Chapmann length. We also demonstrate that
depending on the valency, the system may exhibit a novel first-order binding
transition at short distances.Comment: 15 pages, 8 figures, to appear in PR
- …
