639 research outputs found

    Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model

    Get PDF
    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z_3-chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z_n-spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z_3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1

    Form factors of twist fields in the lattice Dirac theory

    Full text link
    We study U(1) twist fields in a two-dimensional lattice theory of massive Dirac fermions. Factorized formulas for finite-lattice form factors of these fields are derived using elliptic parametrization of the spectral curve of the model, elliptic determinant identities and theta functional interpolation. We also investigate the thermodynamic and the infinite-volume scaling limit, where the corresponding expressions reduce to form factors of the exponential fields of the sine-Gordon model at the free-fermion point.Comment: 20 pages, 2 figure

    Identities in the Superintegrable Chiral Potts Model

    Full text link
    We present proofs for a number of identities that are needed to study the superintegrable chiral Potts model in the Q0Q\ne0 sector.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 11 pages, uses eufb10 and eurm10 fonts. Typeset twice! vs2: Two equations added. vs3: Introduction adde

    Multi-particle structure in the Z_n-chiral Potts models

    Full text link
    We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi, where \phi is the chiral angle and Q is the Z_n-charge of the respective particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript), BONN-HE-92-3

    Spin operator matrix elements in the superintegrable chiral Potts quantum chain

    Full text link
    We derive spin operator matrix elements between general eigenstates of the superintegrable Z_N-symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by R.Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field (N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables Method.Comment: 24 pages, 1 figur

    The Onsager Algebra Symmetry of τ(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the τ(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Factorized finite-size Ising model spin matrix elements from Separation of Variables

    Full text link
    Using the Sklyanin-Kharchev-Lebedev method of Separation of Variables adapted to the cyclic Baxter--Bazhanov--Stroganov or τ(2)\tau^{(2)}-model, we derive factorized formulae for general finite-size Ising model spin matrix elements, proving a recent conjecture by Bugrij and Lisovyy

    Dispersion Theory and the Low Energy Constants for Neutral Pion Photoproduction

    Full text link
    The relativistic amplitudes of pion photoproduction are evaluated by dispersion relations at t=const. The imaginary parts of the amplitudes are taken from the MAID model covering the absorption spectrum up to center-of-mass energies W = 2.2 GeV. For sub-threshold kinematics the amplitudes are expanded in powers of the two independent variables \nu and t related to energy and momentum transfer. Subtracting the loop corrections from this power series allows one to determine the counter terms of covariant baryon chiral perturbation theory. The proposed continuation of the amplitudes into the unphysical region provides a unique framework to derive the low-energy constants to any given order as well as an estimate of the higher order terms by global properties of the absorption spectrum.Comment: 13 pages, 6 figures, 5 table

    Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field

    Get PDF
    We study all known and as yet unknown forces between two neutral atoms, modeled as three dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center of mass motion of the atom, its internal degrees of freedom and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first principle, systematic and unified description including the intrinsic field fluctuations and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces -- London, van der Waals and Casimir-Polder forces -- between neutral atoms in the long-time limit but also discover the existence of two new types of interatomic forces. The first, a `nonequilibrium force', arises when the field and atoms are not in thermal equilibrium, and the second, which we call an `entanglement force', originates from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure

    Conformal off-diagonal boundary density profiles on a semi-infinite strip

    Full text link
    The off-diagonal profile phi(v) associated with a local operator (order parameter or energy density) close to the boundary of a semi-infinite strip with width L is obtained at criticality using conformal methods. It involves the surface exponent x_phi^s and displays a simple universal behaviour which crosses over from surface finite-size scaling when v/L is held constant to corner finite-size scaling when v/L -> 0.Comment: 5 pages, 1 figure, IOP macros and eps
    corecore