3,990 research outputs found

    Memorias del congreso de investigacion cientifica

    Get PDF

    The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications

    Full text link
    Background Solid tumour growth is the consequence of a complex interplay between cancer cells and their microenvironment. Recently, a new global transcriptomic immune classification of solid tumours has identified six immune subtypes (ISs) (C1–C6). Our aim was to specifically characterise ISs in colorectal cancer (CRC) and assess their interplay with the consensus molecular subtypes (CMSs). Methods Clinical and molecular information, including CMSs and ISs, were obtained from The Cancer Genome Atlas (TCGA) (N = 625). Immune cell populations, differential gene expression and gene set enrichment analysis were performed to characterise ISs in the global CRC population by using CMSs. Results Only 5 ISs were identified in CRC, predominantly C1 wound healing (77%) and C2 IFN-γ dominant (17%). CMS1 showed the highest proportion of C2 (53%), whereas C1 was particularly dominant in CMS2 (91%). CMS3 had the highest representation of C3 inflammatory (7%) and C4 lymphocyte depleted ISs (4%), whereas all C6 TGF-β dominant cases belonged to CMS4 (2.3%). Prognostic relevance of ISs in CRC substantially differed from that reported for the global TCGA, and ISs had a greater ability to stratify the prognosis of CRC patients than CMS classification. C2 had higher densities of CD8, CD4 activated, follicular helper T cells, regulatory T cells and neutrophils and the highest M1/M2 polarisation. C2 had a heightened activation of pathways related to the immune system, apoptosis and DNA repair, mTOR signalling and oxidative phosphorylation, whereas C1 was more dependent of metabolic pathways. Conclusions The correlation of IS and CMS allows a more precise categorisation of patients with relevant clinical and biological implications, which may be valuable tools to improve tailored therapeutic interventions in CRC patients.This work was funded by projects DTS15/00157 , PI16/01827 and CIBER-ONC CB16/12/00442 from the Instituto de Salud Carlos III ( Ministry of Economy, Industry and Competitiveness, Spain ) and cofunded by the European Regional Development Fund (ERDF, European Union), and approved by the Ethics Committee or our Institution. BS is funded by AECC (Spain). MCR is funded by Instituto de Salud Carlos III and SEOM (Spain) CCP and BRC are funded by CAM (Programa de Empleo Juvenil (YEI)

    Study of secondary muons detected within the tunnels of the Cholula pyramid

    Get PDF
    The pyramid of Cholula was built at the beginning of 100 B.C. and during of period of 500 years it was finished, had several new constructions, based on the previous constructions. The primarily material of construction is the adobe. Early in 1931 archaeological excavations began with the intention of exploring the interior of the pyramid, excavations were stopped in 1971, and to date no further excavations have been carried out. This work shows the first measurements of muons, particles that are very penetrating, these are generated by primary cosmic rays that was incoming in the atmosphere and these generates a rain of secondary particles, among them the muons. To measure this kind of particles was implemented a detector system, it is formed by a scintillator plastic coupled to a tube photomultiplier; the signals were acquired by mean of an oscilloscope. The detector was collocated near of the center of the pyramid; the location belongs to the maxima concentration in mass over the detector. Graphs of the charge distribution, maximum amplitude and characteristic rise times of the generated pulses in a plastic scintillator are shown, this is scintillator was synthesized in the materials laboratory of the FCFM-BUAP. In addition the optical characterization of the same was realized

    Dirac Neutrinos, Dark Energy and Baryon Asymmetry

    Get PDF
    We explore a new origin of neutrino dark energy and baryon asymmetry in the universe. The neutrinos acquire small masses through the Dirac seesaw mechanism. The pseudo-Nambu-Goldstone boson associated with neutrino mass-generation provides a candidate for dark energy. The puzzle of cosmological baryon asymmetry is resolved via neutrinogenesis.Comment: 6 pages, 1 figure. Accepted by JCAP (only minor rewordings, refs added

    Ultraviolet-Optical observations of the Seyfert 2 Galaxies NGC 7130, NGC 5135 and IC 3639: Implications for the Starburst-AGN Connection

    Get PDF
    We present and discuss HST (WFPC2 and FOC) images and UV GHRS spectra plus ground-based near UV through to near IR spectra of three Seyfert 2 nuclei (NGC 7130, NGC 5135 and IC 3639). These galaxies, together to Mrk 477, were selected from a bigger sample that comprises the 20 brightest Seyfert 2 nuclei, with the goal to study the origin of the UV-optical-near IR featureless continuum in Seyfert 2 nuclei. These four galaxies have bolometric luminosities, as computed with the four IRAS bands, of 10^11 Lsol. They are close enough to be resolved with HST the nuclear zone. This makes these Seyfert 2 galaxies benchmarks to study the Starburst-AGN connection in more distant galaxies. The data provide direct evidence of the existence of a central nuclear starburst that dominates the UV light, and that seem to be responsible for the origin of the so called featureless continuum. These starbursts are dusty and compact. They have sizes (from less than 100 pc to a few hundred pc) much smaller and closer to the nucleus than that seen in the prototype Seyfert 2 galaxy NGC 1068. The bolometric luminosity of these starbursts is similar to the estimated bolometric luminosities of their obscured Seyfert 1 nuclei, and thus they contribute in the same amount to the overall energetics of these galaxies.Comment: to be published in ApJ 505, September issue. The figures are in a tar files at: http://www.iaa.es/~rosa/Seyfert

    Baryogenesis at Low Reheating Temperatures

    Full text link
    We note that the maximum temperature during reheating can be much greater than the reheating temperature TrT_r at which the Universe becomes radiation dominated. We show that the Standard Model anomalous (B+L)(B+L)-violating processes can therefore be in thermal equilibrium for 1 GeV \simlt T_{r}\ll 100 GeV. Electroweak baryogenesis could work and the traditional upper bound on the Higgs mass coming from the requirement of the preservation of the baryon asymmetry may be relaxed. Alternatively, the baryon asymmetry may be reprocessed by sphaleron transitions either from a (B−L)(B-L) asymmetry generated by the Affleck-Dine mechanism or from a chiral asymmetry between eRe_R and eLe_L in a B−L=0B-L = 0 Universe. Our findings are also relevant to the production of the baryon asymmetry in large extra dimension models.Comment: 4 pages, version to appear in PRL: references added, new titl
    • …
    corecore