250 research outputs found

    Hybrid Inflation Exit through Tunneling

    Full text link
    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.Comment: 17 pages, 2 figure

    Lamb Shift of Unruh Detector Levels

    Full text link
    We argue that the energy levels of an Unruh detector experience an effect similar to the Lamb shift in Quantum Electrodynamics. As a consequence, the spectrum of energy levels in a curved background is different from that in flat space. As examples, we consider a detector in an expanding Universe and in Rindler space, and for the latter case we suggest a new expression for the local virtual energy density seen by an accelerated observer. In the ultraviolet domain, that is when the space between the energy levels is larger than the Hubble rate or the acceleration of the detector, the Lamb shift quantitatively dominates over the thermal response rate.Comment: 20 page

    Energy Density in Expanding Universes as Seen by Unruh's Detector

    Full text link
    We consider the response of an Unruh detector to scalar fields in an expanding space-time. When combining transition elements of the scalar field Hamiltonian with the interaction operator of detector and field, one finds at second order in time-dependent perturbation theory a transition amplitude, which actually dominates in the ultraviolet over the first order contribution. In particular, the detector response faithfully reproduces the particle number implied by the stress-energy of a minimally coupled scalar field, which is inversely proportional to the energy of a scalar mode. This finding disagrees with the contention that in de Sitter space, the response of the detector drops exponentially with particle energy and therefore indicates a thermal spectrum.Comment: 15 pages, 1 figur

    Hybrid inflation followed by modular inflation

    Full text link
    Inflationary models with a superheavy scale F-term hybrid inflation followed by an intermediate scale modular inflation are considered. The restrictions on the power spectrum P_R of curvature perturbation and the spectral index n_s from the recent data within the power-law cosmological model with cold dark matter and a cosmological constant can be met provided that the number of e-foldings N_HI* suffered by the pivot scale k_*=0.002/Mpc during hybrid inflation is suitably restricted. The additional e-foldings needed for solving the horizon and flatness problems are generated by modular inflation with a string axion as inflaton. For central values of P_R and n_s, the grand unification scale comes out, in the case of standard hybrid inflation, close to its supersymmetric value M_GUT=2.86 x 10^16 GeV, the relevant coupling constant is relatively large (0.005-0.14), and N_HI* is between 10 and 21.7. In the shifted [smooth] hybrid inflation case, the grand unification scale can be identified with M_GUT for N_HI*=21 [N_HI*=18].Comment: 13 pages including 3 figures, uses ws-ijmpa.cls, minor corrections included, talk given at the CTP Symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, British University in Egypt (BUE), Cairo, 11-14 March 2007 (to appear in the proceedings

    Spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a scalar field

    Get PDF
    We study the spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a massless quantum scalar field and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy of the atom. It is found that, in contrast to the case where a monopole like interaction between the atom and the field is assumed, there appear extra corrections proportional to the acceleration squared, in addition to corrections which can be viewed as a result of an ambient thermal bath at the Unruh temperature, as compared with the inertial case, and the acceleration induced correction terms show anisotropy with the contribution from longitudinal polarization being four times that from the transverse polarization for isotropically polarized accelerated atoms. Our results suggest that the effect of acceleration on the rate of change of the mean atomic energy is dependent not only on the quantum field to which the atom is coupled, but also on the type of the interaction even if the same quantum scalar field is considered.Comment: 11 pages, no figure

    Unruh response functions for scalar fields in de Sitter space

    Full text link
    We calculate the response functions of a freely falling Unruh detector in de Sitter space coupled to scalar fields of different coupling to the curvature, including the minimally coupled massless case. Although the responses differ strongly in the infrared as a consequence of the amplification of superhorizon modes, the energy levels of the detector are thermally populated.Comment: 16 pages, 1 figure, accepted for publication by Classical and Quantum Gravit

    Right-handed Sneutrinos as Nonthermal Dark Matter

    Full text link
    When the minimal supersymmetric standard model is augmented by three right-handed neutrino superfields, one generically predicts that the neutrinos acquire Majorana masses. We postulate that all supersymmetry (SUSY) breaking masses as well as the Majorana masses of the right-handed neutrinos are around the electroweak scale and, motivated by the smallness of neutrino masses, assume that the lightest supersymmetric particle (LSP) is an almost-pure right-handed sneutrino. We discuss the conditions under which this LSP is a successful dark matter candidate. In general, such an LSP has to be nonthermal in order not to overclose the universe, and we find the conditions under which this is indeed the case by comparing the Hubble expansion rate with the rates of the relevant thermalizing processes, including self-annihilation and co-annihilation with other SUSY and standard model particles.Comment: 17 pages v.2: References adde

    Accelerated detectors in Dirac vacuum: the effects of horizon fluctuations

    Full text link
    We consider an Unruh-DeWitt detector interacting with a massless Dirac field. Assuming that the detector is moving along an hyperbolic trajectory, we modeled the effects of fluctuations in the event horizon using a Dirac equation with random coefficients. First, we develop the perturbation theory for the fermionic field in a random media. Further we evaluate corrections due to the randomness in the response function associated to different model detectors.Comment: 19 pages, 1 figur

    Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data

    Full text link
    We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra (presented in a previous work) were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, f10< 0.095, and on their tension, G\mu< 0.57 x 10^-6, both at 95% confidence level using WMAP7 data; and f10 < 0.048 and G\mu < 0.42 x 10^-6 using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, ns=1, is now disfavoured at 2.4\sigma\ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.Comment: 8 pages, 3 figures; Minor corrections, matches published versio
    corecore