42 research outputs found

    Potassium Channel and NKCC Cotransporter Involvement in Ocular Refractive Control Mechanisms

    Get PDF
    Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/−10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5mM Ba2+ and 10−5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba2+ but significant change only for negative lens defocus with bumetanide ; ; ; ; ; ). Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a possible common mechanism. The selective inhibition of refractive compensation to negative lens in chick by loop diuretics such as bumetanide suggests that these drugs may be effective in the therapeutic management of human myopia

    Cochlin, Intraocular Pressure Regulation and Mechanosensing

    Get PDF
    Fluid shear modulates many biological properties. How shear mechanosensing occurs in the extracellular matrix (ECM) and is transduced into cytoskeletal change remains unknown. Cochlin is an ECM protein of unknown function. Our investigation using a comprehensive spectrum of cutting-edge techniques has resulted in following major findings: (1) over-expression and down-regulation of cochlin increase and decrease intraocular pressure (IOP), respectively. The overexpression was achieved in DBA/2J-Gpnmb+/SjJ using lentiviral vectors, down-regulation was achieved in glaucomatous DBA/2J mice using targeted disruption (cochlin-null mice) and also using lentiviral vector mediated shRNA against cochlin coding region; (2) reintroduction of cochlin in cochlin-null mice increases IOP; (3) injection of exogenous cochlin also increased IOP; (4) increasing perfusion rates increased cochlin multimerization, which reduced the rate of cochlin proteolysis by trypsin and proteinase K; The cochlin multimerization in response to shear stress suggests its potential mechanosensing. Taken together with previous studies, we show cochlin is involved in regulation of intraocular pressure in DBA/2J potentially through mechanosensing of the shear stress

    Intraocular pressure and aqueous humor flow during a euglycemic-hyperinsulinemic clamp in patients with type 1 diabetes and microvascular complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microvascular complications, including retinopathy and nephropathy are seen with type 1 diabetes. It is unknown whether functional changes in aqueous humor flow or intraocular pressure (IOP) develop in parallel with these complications. This study was designed to test the hypothesis that clinical markers of microvascular complications coexist with the alteration in aqueous humor flow and IOP.</p> <p>Methods</p> <p>Ten patients with type 1 diabetes and ten healthy age- and weight-matched controls were studied. Aqueous flow was measured by fluorophotometry during a hyperinsulinemic-euglycemic clamp (insulin 2 mU/kg/min). Intraocular pressure was measured by tonometry at -10, 90 and 240 minutes from the start of the clamp, and outflow facility was measured by tonography at 240 minutes.</p> <p>Results</p> <p>During conditions of identical glucose and insulin concentrations, mean aqueous flow was lower by 0.58 μl/min in the diabetes group compared to controls (2.58 ± 0.65 versus 3.16 ± 0.66 μl/min, respectively, mean ± SD, p = 0.07) but statistical significance was not reached. Before the clamp, IOP was higher in the diabetes group (22.6 ± 3.0 mm Hg) than in the control group (19.3 ± 1.8 mm Hg, p = 0.01) but at 90 minutes into the clamp, and for the remainder of the study, IOP was reduced in the diabetes group to the level of the control group. Ocular pulse amplitude and outflow facility were not different between groups. Systolic blood pressure was significantly higher in the diabetes group, but diastolic and mean arterial pressures were not different.</p> <p>Conclusions</p> <p>We conclude that compared to healthy participants, patients with type 1 diabetes having microalbuminuria and retinopathy have higher IOPs that are normalized by hyperinsulinemia. During the clamp, a reduction in aqueous flow was not statistically significant.</p

    Preventive Effects of Omega-3 and Omega-6 Fatty Acids on Peroxide Mediated Oxidative Stress Responses in Primary Human Trabecular Meshwork Cells

    Get PDF
    Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H2O2, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H2O2 further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H2O2 stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H2O2 mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H2O2 induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side effects of omega-6, omega-3 appears to be the more beneficial fatty acid in respect of prophylactic intake for prevention of a glaucomatous disease

    Serum effects on aqueous outflow during anterior chamber perfusion in monkeys. Invest Ophthalmol Vis Sci.

    No full text
    urpose. To prevent the increase in outflow facility during anterior chamber perfusion in nonhuman primates by the addition of autologous serum to Barany&apos;s mock aqueous humor. Methods. Total outflow facility was measured simultaneously in both eyes of living cynomolgus monkeys for 3 hours by two-level constant pressure perfusion of the anterior chambers from elevated reservoirs with Barany&apos;s solution with (one eye) or without (opposite eye) 3%, 5%, 10%, or 15% to 20% autologous serum. In other experiments, the anterior chamber contents initially were exchanged with Barany&apos;s solution with (one eye) or without (opposite eye) 5% autologous serum, and the facility response to intravenous pilocarpine was determined. Results. Eyes perfused with serum had a lower starting facility than control eyes, with facility decreasing with increasing serum concentrations. For both groups, facility increased with perfusion time and with volume of fluid perfused through the eye, but the rate of change of facility over time and per change in volume was significandy less for the serum-treated eyes. This difference remained significant when the proportional change of facility relative to baseline level was analyzed as a function of time but not as a function of volume. Intravenous infusion of pilocarpine increased facility by approximately the same proportion relative to baseline in both groups, but the absolute change and the final facility were lower in the serum-treated eyes. Conclusions. Serum or a serum component in the vicinity of the trabecular meshwork normally may help maintain outflow resistance but may be washed away during perfusion with serumfree media

    Identification of Adult Stem Cells in Schwalbe&apos;s Line Region of the Primate Eye

    No full text
    PURPOSE. To identify stem cells in the chamber angle of the monkey eye by detection of 5-bromo-2 0 -deoxyuridine (BrdU) long-term retention. METHODS. Four cynomolgus monkeys were treated with BrdU via subcutaneous pumps for 4 weeks. The eyes of two animals were processed immediately thereafter (group 1) while in the other animals, BrdU treatment was discontinued for 4 weeks to allow identification of cells with long-term BrdU retention (group 2). The number of BrdU-positive nuclei was quantified, and the cells were characterized by immunohistochemistry and transmission electron microscopy (TEM). RESULTS. The number of BrdU-positive cells was higher at Schwalbe&apos;s line covering the peripheral end of Descemet&apos;s membrane than in Schlemm&apos;s canal (SC) endothelium, trabecular meshwork (TM), and scleral spur (SS). Labeling with BrdU in SC, TM, and SS was less intense and the number of labeled cells was smaller in group 2 than in group 1. In contrast, in cells of Schwalbe&apos;s line the intensity of BrdU staining and the number of BrdUpositive cells was similar when group 1 and 2 monkeys were compared with each other, indicating long-term BrdU retention. Cells that were BrdU-positive in Schwalbe&apos;s line region stained for the stem cell marker OCT4. Details of a stem cell niche in Schwalbe&apos;s line region were identified by TEM. CONCLUSIONS. We provide evidence for a niche in the Schwalbe&apos;s line region harboring cells with long-term BrdU retention and OCT4 immunoreactivity. The cells likely constitute a population of adult stem cells with the capability to compensate for the loss of TM and/or corneal endothelial cells
    corecore