44,697 research outputs found

    Optical Probe of Quantum Shot Noise Reduction at a Single-Atom Contact

    Full text link
    Visible and infra-red light emitted at a Ag-Ag(111) junction has been investigated from tunneling to single atom contact conditions with a scanning tunneling microscope. The light intensity varies in a highly nonlinear fashion with the conductance of the junction and exhibits a minimum at conductances close to the conductance quantum. The data are interpreted in terms of current noise at optical frequencies, which is characteristic of partially open transport channels

    Numerical Tests of Rotational Mixing in Massive Stars with the new Population Synthesis Code BONNFIRES

    Full text link
    We use our new population synthesis code BONNFIRES to test how surface abundances predicted by rotating stellar models depend on the numerical treatment of rotational mixing, such as spatial resolution, temporal resolution and computation of mean molecular weight gradients. We find that even with identical numerical prescriptions for calculating the rotational mixing coefficients in the diffusion equation, different timesteps lead to a deviation of the coefficients and hence surface abundances. We find the surface abundances vary by 10-100% between the model sequences with short timestep of 0.001Myr to model sequences with longer timesteps. Model sequences with stronger surface nitrogen enrichment also have longer main-sequence lifetimes because more hydrogen is mixed to the burning cores. The deviations in main-sequence lifetimes can be as large as 20%. Mathematically speaking, no numerical scheme can give a perfect solution unless infinitesimally small timesteps are used. However, we find that the surface abundances eventually converge within 10% between modelling sequences with sufficiently small timesteps below 0.1Myr. The efficiency of rotational mixing depends on the implemented numerical scheme and critically on the computation of the mean molecular weight gradient. A smoothing function for the mean molecular weight gradient results in stronger rotational mixing. If the discretization scheme or the computational recipe for calculating the mean molecular weight gradient is altered, re-calibration of mixing parameters may be required to fit observations. If we are to properly understand the fundamental physics of rotation in stars, it is crucial that we minimize the uncertainty introduced into stellar evolution models when numerically approximating rotational mixing processes.Comment: 8 pages, 6 figures, accepted by A&

    The Skewness of the Aperture Mass Statistic

    Full text link
    We present simple formulae for calculating the skewness and kurtosis of the aperture mass statistic for weak lensing surveys which is insensitive to masking effects of survey geometry or variable survey depth. The calculation is the higher order analog of the formula given by Schneider et al (2002) which has been used to compute the variance of the aperture mass from several lensing surveys. As our formula requires the three-point shear correlation function, we also present an efficient tree-based algorithm for measuring it. We show how our algorithm would scale in computing time and memory usage for future lensing surveys. Finally, we apply the procedure to our CTIO survey data, originally described in Jarvis et al (2003). We find that the skewness is positive (inconsistent with zero) at the 2 sigma level. However, the signal is too noisy from this data to usefully constrain cosmology.Comment: 16 pages, accepted by MNRAS. Minor revisions; this replacement matches the accepted versio

    Hall effect in laser ablated Co_2(Mn,Fe)Si thin films

    Full text link
    Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction shows for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).Comment: 9 pages, 6 figures submitted to J Phys

    Evolution of the Pairwise Peculiar Velocity Distribution Function in Lagrangian Perturbation Theory

    Get PDF
    The statistical distribution of the radial pairwise peculiar velocity of galaxies is known to have an exponential form as implied by observations and explicitly shown in N-body simulations. Here we calculate its statistical distribution function using the Zel'dovich approximation assuming that the primordial density fluctuations are Gaussian distributed. We show that the exponential distribution is realized as a transient phenomena on megaparsec scales in the standard cold-dark-matter model.Comment: 19 pages, 8 Postscript figures, AAS LaTe

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    Frequency comparisons and absolute frequency measurements of 171Yb+ single-ion optical frequency standards

    Full text link
    We describe experiments with an optical frequency standard based on a laser cooled 171^{171}Yb+^+ ion confined in a radiofrequency Paul trap. The electric-quadrupole transition from the 2S1/2(F=0)^2S_{1/2}(F=0) ground state to the 2D3/2(F=2)^2D_{3/2}(F=2) state at the wavelength of 436 nm is used as the reference transition. In order to compare two 171^{171}Yb+^+ standards, separate frequency servo systems are employed to stabilize two probe laser frequencies to the reference transition line centers of two independently stored ions. The experimental results indicate a relative instability (Allan standard deviation) of the optical frequency difference between the two systems of σy(1000s)=5⋅10−16\sigma_y(1000 {\rm s})=5\cdot 10^{-16} only, so that shifts in the sub-hertz range can be resolved. Shifts of several hertz are observed if a stationary electric field gradient is superimposed on the radiofrequency trap field. The absolute optical transition frequency of Yb+^+ at 688 THz was measured with a cesium atomic clock at two times separated by 2.8 years. A temporal variation of this frequency can be excluded within a 1σ1\sigma relative uncertainty of 4.4⋅10−154.4\cdot 10^{-15} yr−1^{-1}. Combined with recently published values for the constancy of other transition frequencies this measurement provides a limit on the present variability of the fine structure constant α\alpha at the level of 2.0⋅10−152.0\cdot 10^{-15} yr−1^{-1}.Comment: 12 pages, 5 figures, Proceedings of MPLP'04, Novosibirsk, August 22.-27., 200
    • …
    corecore