5,028 research outputs found
The racist bodily imaginary: the image of the body-in-pieces in (post)apartheid culture
This paper outlines a reoccurring motif within the racist imaginary of (post)apartheid culture: the black body-in-pieces. This disturbing visual idiom is approached from three conceptual perspectives. By linking ideas prevalent in Frantz Fanon’s description of colonial racism with psychoanalytic concepts such as Lacan’s notion of the corps morcelé, the paper offers, firstly, an account of the black body-in-pieces as fantasmatic preoccupation of the (post)apartheid imaginary. The role of such images is approached, secondly, through the lens of affect theory which eschews a representational ‘reading’ of such images in favour of attention to their asignifying intensities and the role they play in effectively constituting such bodies. Lastly, Judith Butler’s discussion of war photography and the conditions of grievability introduces an ethical dimension to the discussion and helps draw attention to the unsavory relations of enjoyment occasioned by such images
3',5'-Cyclic Adenosine Monophosphate- and Ca2+-Calmodulin-Dependent Endogenous Protein Phosphorylation Activity in Membranes of the Bovine Chromaffin Secretory Vesicles: Identification of Two Phosphorylated Components as Tyrosine Hydroxylase and Protein Kinase Regulatory Subunit Type II
Abstract: Membranes of the secretory vesicles from bovine adrenal medulla were investigated for the presence of the endogenous protein phosphorylation activity. Seven phosphoprotein bands in the molecular weight range of 250,000 to 30,000 were observed by means of the sodium dodecyl sulphate electrophoresis and autoradiography. On the basis of the criteria of molecular weight, selective stimulation of the phosphorylation by cyclic AMP (as compared with cyclic GMP) and immunoprecipitation by specific antibodies, band 5 (molecular weight 60,300) was found to represent the phosphorylated form of the secretory vesicle-bound tyrosine hydroxylase. The electrophoretic mobility, the stimulatory and inhibitory effects of cyclic AMP in presence of Mg2+ and Zn,2+ respectively, and immunoreactivity toward antibodies showed band 6 to contain two forms of the regulatory subunits of the type II cyclic AMP-dependent protein kinase, distinguishable by their molecular weights (56,000 and 52,000, respectively). Phosphorylation of band 7 (molecular weight 29,800) was stimulated about 2 to 3 times by Ca2+ and calmodulin in the concentration range of both agents believed to occur in the secretory tissues under physiological conditions
The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope
Measurements of the dark energy equation-of-state parameter, , have been
limited by uncertainty in the selection effects and photometric calibration of
Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is
designed to lower these uncertainties by creating a new sample of SNe
Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample
with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological
parameters with 1,338 SNe from a single telescope and a single, well-calibrated
photometric system. For the first time, both the low- and high- data are
predominantly discovered by surveys that do not target pre-selected galaxies,
reducing selection bias uncertainties. The data include 875 SNe without
spectroscopic classifications and we show that we can robustly marginalize over
CC SN contamination. We measure Foundation Hubble residuals to be fainter than
the pre-existing low- Hubble residuals by mag (stat+sys).
By combining the SN Ia data with cosmic microwave background constraints, we
find , consistent with CDM. With 463
spectroscopically classified SNe Ia alone, we measure . Using
the more homogeneous and better-characterized Foundation sample gives a 55%
reduction in the systematic uncertainty attributed to SN Ia sample selection
biases. Although use of just a single photometric system at low and high
redshift increases the impact of photometric calibration uncertainties in this
analysis, previous low- samples may have correlated calibration
uncertainties that were neglected in past studies. The full Foundation sample
will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.Comment: 30 pages, 17 figures, accepted by Ap
The reductive activation of CO2 across a Ti═Ti double bond: synthetic, structural, and mechanistic studies
[Image: see text] The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti(2)Pn(†)(2) (1) (Pn(†) = 1,4-{Si(i)Pr(3)}(2)C(8)H(4)) with CO(2) is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO(2) reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO(2) molecule bound symmetrically to the two Ti centers in a μ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO(2) is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti(2)Pn(2) (Pn = C(8)H(6)) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO(2) reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS(2) adduct 8 that shows symmetrical binding to the Ti(2) unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph(3)PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti–Ti bond has been cleaved
Nebular Spectroscopy of Kepler's Brightest Supernova
We present late-time (240-260 days after peak brightness) optical
photometry and nebular (+236 and +264 days) spectroscopy of SN 2018oh, the
brightest Type Ia supernova (SN Ia) observed by the Kepler telescope. The
Kepler/K2 30-minute cadence observations started days before explosion and
continued past peak brightness. For several days after explosion, SN 2018oh had
blue "excess" flux in addition to a normal SN rise. The flux excess can be
explained by the interaction between the SN and a Roche-lobe filling
non-degenerate companion star. Such a scenario should also strip material from
the companion star, that would emit once the SN ejecta become optically thin,
imprinting relatively narrow emission features in its nebular spectrum. We
search our nebular spectra for signs of this interaction, including close
examination of wavelengths of hydrogen and helium transitions, finding no
significant narrow emission. We place upper limits on the luminosity of these
features of
for H, He I 5875, and He I 6678, respectively.
Assuming a simple model for the amount of swept-up material, we estimate upper
mass limits for hydrogen of and helium
of . Such stringent limits are unexpected
for the companion-interaction scenario consistent with the early data. No known
model can explain the excess flux, its blue color, and the lack of late-time
narrow emission features.Comment: 10 pages, 5 figures, accepted for publication in APJ Letter
Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?
In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice
Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger
On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as
the optical counterpart of the binary neutron star gravitational wave event
GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until
8.5 days after merger. Over the first hour of observations the ejecta rapidly
expanded and cooled. Applying blackbody fits to the spectra, we measure the
photosphere cooling from K to K,
and determine a photospheric velocity of roughly 30% of the speed of light. The
spectra of SSS17a begin displaying broad features after 1.46 days, and evolve
qualitatively over each subsequent day, with distinct blue (early-time) and red
(late-time) components. The late-time component is consistent with theoretical
models of r-process-enriched neutron star ejecta, whereas the blue component
requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc
Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes
The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission
Bonding in complexes of bis(pentalene)di-titanium, Ti2(C8H6)2
Bonding in the bis(pentalene)di-titanium ‘double-sandwich’ species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by xdensity functional calculations and fragment analysis. Ti2Pn2 with C2v symmetry has two metal-metal bonds and a low-lying metal based empty orbital, all three frontier orbitals having a1 symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bis(cyclopentadienyl) metal fragments. Electrochemical studies on Ti2Pn†2 (Pn† = C8H4{SiiPr3-1,4}2) reveal a one-electron oxidation, and the formally mixed-valence Ti(II)-Ti(III) cationic complex [Ti2Pn†2][B(C6F5)4] has been structurally characterised. Theory indicates an S = ½ ground state electronic configuration for the latter, confirmed by EPR spectroscopy and SQUID magnetometry.
Carbon dioxide binds symmetrically to Ti2Pn2 preserving C2v symmetry, as does carbon disulfide. The dominant interaction in Ti2Pn2CO2 is σ donation into the LUMO of bent CO2 and donation from the O atoms to Ti2Pn2 is minimal, whereas in Ti2Pn2CS2 there is significant interaction with the S atoms. The bridging O atom in the mono(oxo) species Ti2Pn2O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analog Ti2Pn2S behaves similarly.
Ti2Pn2 is also capable of binding one, two and three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding and an asymmetric structure is found. The dicarbonyl adduct Ti2Pn2(CO)2 has Cs symmetry with the Ti2Pn2 unit acting as two MCp2 fragments. Synthetic studies show, that in the presence of excess CO a tricarbonyl complex Ti2Pn†2(CO)3 is formed, which optimises to an asymmetric structure with two terminal CO ligands and one semi-bridging. Low temperature 13C NMR spectroscopy reveals a rapid dynamic exchange between the two bound CO sites and free CO
- …