1,720 research outputs found
Frequency domain interferometer simulation with higher-order spatial modes
FINESSE is a software simulation that allows to compute the optical
properties of laser interferometers as they are used by the interferometric
gravitational-wave detectors today. It provides a fast and versatile tool which
has proven to be very useful during the design and the commissioning of
gravitational-wave detectors. The basic algorithm of FINESSE numerically
computes the light amplitudes inside an interferometer using Hermite-Gauss
modes in the frequency domain. In addition, FINESSE provides a number of
commands to easily generate and plot the most common signals like, for example,
power enhancement, error or control signals, transfer functions and
shot-noise-limited sensitivities.
Among the various simulation tools available to the gravitational wave
community today, FINESSE is the most advanced general optical simulation that
uses the frequency domain. It has been designed to allow general analysis of
user defined optical setups while being easy to install and easy to use.Comment: Added an example for the application of the simulation during the
commisioning of the GEO 600 gravitational-wave detecto
Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer
Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre–Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy − Rcx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre–Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism
Performance of a 1200m long suspended Fabry-Perot cavity
Using one arm of the Michelson interferometer and the power recycling mirror
of the interferometric gravitational wave detector GEO600, we created a
Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment
was to gather first experience with the main optics, its suspensions and the
corresponding control systems. The residual displacement of a main mirror is
about 150 nm rms. By stabilising the length of the 1200 m long cavity to the
pre-stabilised laser beam we achieved an error point frequency noise of 0.1
mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the
reliable performance of all included subsystems by several 10-hour-periods of
continuous stable operation. Thus the full frequency stabilisation scheme for
GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure
Demonstration of detuned dual recycling at the Garching 30m laser interferometer
Dual recycling is an advanced optical technique to enhance the
signal-to-noise ratio of laser interferometric gravitational wave detectors in
a limited bandwidth. To optimise the center of this band with respect to
Fourier frequencies of expected gravitational wave signals detuned dual
recycling has to be implemented. We demonstrated detuned dual recycling on a
fully suspended 30m prototype interferometer. A control scheme that allows to
tune the detector to different frequencies will be outlined. Good agreement
between the experimental results and numerical simulations has been achieved.Comment: 9 page
Double layer in ionic liquids: Overscreening vs. crowding
We develop a simple Landau-Ginzburg-type continuum theory of solvent-free
ionic liquids and use it to predict the structure of the electrical double
layer. The model captures overscreening from short-range correlations, dominant
at small voltages, and steric constraints of finite ion sizes, which prevail at
large voltages. Increasing the voltage gradually suppresses overscreening in
favor of the crowding of counterions in a condensed inner layer near the
electrode. The predicted ion profiles and capacitance-voltage relations are
consistent with recent computer simulations and experiments on room-temperature
ionic liquids, using a correlation length of order the ion size.Comment: 4 pages + supplementary informatio
Non-mean-field theory of anomalously large double-layer capacitance
Mean-field theories claim that the capacitance of the double-layer formed at
a metal/ionic conductor interface cannot be larger than that of the Helmholtz
capacitor, whose width is equal to the radius of an ion. However, in some
experiments the apparent width of the double-layer capacitor is substantially
smaller. We propose an alternate, non-mean-field theory of the ionic
double-layer to explain such large capacitance values. Our theory allows for
the binding of discrete ions to their image charges in the metal, which results
in the formation of interface dipoles. We focus primarily on the case where
only small cations are mobile and other ions form an oppositely-charged
background. In this case, at small temperature and zero applied voltage dipoles
form a correlated liquid on both contacts. We show that at small voltages the
capacitance of the double-layer is determined by the transfer of dipoles from
one electrode to the other and is therefore limited only by the weak
dipole-dipole repulsion between bound ions, so that the capacitance is very
large. At large voltages the depletion of bound ions from one of the capacitor
electrodes triggers a collapse of the capacitance to the much smaller
mean-field value, as seen in experimental data. We test our analytical
predictions with a Monte Carlo simulation and find good agreement. We further
argue that our ``one-component plasma" model should work well for strongly
asymmetric ion liquids. We believe that this work also suggests an improved
theory of pseudo-capacitance.Comment: 19 pages, 14 figures; some Monte Carlo results and a section about
aqueous solutions adde
Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector
The upcoming European design study `Einstein gravitational-wave Telescope'
represents the first step towards a substantial, international effort for the
design of a third-generation interferometric gravitational wave detector. It is
generally believed that third-generation instruments might not be installed
into existing infrastructures but will provoke a new search for optimal
detector sites. Consequently, the detector design could be subject to fewer
constraints than the on-going design of the second generation instruments. In
particular, it will be prudent to investigate alternatives to the traditional
L-shaped Michelson interferometer. In this article, we review an old proposal
to use three Michelson interferometers in a triangular configuration. We use
this example of a triple Michelson interferometer to clarify the terminology
and will put this idea into the context of more recent research on
interferometer technologies. Furthermore the benefits of a triangular detector
will be used to motivate this design as a good starting point for a more
detailed research effort towards a third-generation gravitational wave
detector.Comment: Minor corrections to the main text and two additional appendices. 14
pages, 6 figure
Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors
It has long been thought that the sensitivity of laser interferometric
gravitational-wave detectors is limited by the free-mass standard quantum
limit, unless radical redesigns of the interferometers or modifications of
their input/output optics are introduced. Within a fully quantum-mechanical
approach we show that in a second-generation interferometer composed of arm
cavities and a signal recycling cavity, e.g., the LIGO-II configuration, (i)
quantum shot noise and quantum radiation-pressure-fluctuation noise are
dynamically correlated, (ii) the noise curve exhibits two resonant dips, (iii)
the Standard Quantum Limit can be beaten by a factor of 2, over a frequency
range \Delta f/f \sim 1, but at the price of increasing noise at lower
frequencies.Comment: 35 pages, 9 figures; few misprints corrected and some references
adde
Feasibility of measuring the Shapiro time delay over meter-scale distances
The time delay of light as it passes by a massive object, first calculated by
Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all
measurements of the Shapiro time delay have been made over solar-system
distance scales. We show that the new generation of kilometer-scale laser
interferometers being constructed as gravitational wave detectors, in
particular Advanced LIGO, will in principle be sensitive enough to measure
variations in the Shapiro time delay produced by a suitably designed rotating
object placed near the laser beam. We show that such an apparatus is feasible
(though not easy) to construct, present an example design, and calculate the
signal that would be detectable by Advanced LIGO. This offers the first
opportunity to measure space-time curvature effects on a laboratory distance
scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a
few text edits; resubmitted to Classical and Quantum Gravit
Control sideband generation for dual-recycled laser interferometric gravitational wave detectors
We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach–Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO
- …
