67 research outputs found

    Supergravity Black Holes and Billiards and Liouville integrable structure of dual Borel algebras

    Full text link
    In this paper we show that the supergravity equations describing both cosmic billiards and a large class of black-holes are, generically, both Liouville integrable as a consequence of the same universal mechanism. This latter is provided by the Liouville integrable Poissonian structure existing on the dual Borel algebra B_N of the simple Lie algebra A_{N-1}. As a by product we derive the explicit integration algorithm associated with all symmetric spaces U/H^{*} relevant to the description of time-like and space-like p-branes. The most important consequence of our approach is the explicit construction of a complete set of conserved involutive hamiltonians h_{\alpha} that are responsible for integrability and provide a new tool to classify flows and orbits. We believe that these will prove a very important new tool in the analysis of supergravity black holes and billiards.Comment: 48 pages, 7 figures, LaTex; V1: misprints corrected, two references adde

    The R-map and the Coupling of N=2 Tensor Multiplets in 5 and 4 Dimensions

    Full text link
    We study the dimensional reduction of five dimensional N=2 Yang-Mills-Einstein supergravity theories (YMESGT) coupled to tensor multiplets. The resulting 4D theories involve first order interactions among tensor and vector fields with mass terms. If the 5D gauge group, K, does not mix the 5D tensor and vector fields, the 4D tensor fields can be integrated out in favor of 4D vector fields and the resulting theory is dual to a standard 4D YMESGT. The gauge group has a block diagonal symplectic embedding and is a semi-direct product of the 5D gauge group K with a Heisenberg group of dimension (2P+1), where 2P is the number of tensor fields in five dimensions. There exists an infinite family of theories, thus obtained, whose gauge groups are pp-wave contractions of the simple noncompact groups of type SO*(2M). If, on the other hand, the 5D gauge group does mix the 5D tensor and vector fields, the resulting 4D theory is dual to a 4D YMESGT whose gauge group does, in general,NOT have a block diagonal symplectic embedding and involves additional topological terms. The scalar potentials of the dimensionally reduced theories naturally have some of the ingredients that were found necessary for stable de Sitter ground states. We comment on the relation between the known 5D and 4D, N=2 supergravities with stable de Sitter ground states.Comment: 42 pages;latex fil

    Extremal Multicenter Black Holes: Nilpotent Orbits and Tits Satake Universality Classes

    Full text link
    Four dimensional supergravity theories whose scalar manifold is a symmetric coset manifold U[D=4]/Hc are arranged into a finite list of Tits Satake universality classes. Stationary solutions of these theories, spherically symmetric or not, are identified with those of an euclidian three-dimensional sigma-model, whose target manifold is a Lorentzian coset U[D=3]/H* and the extremal ones are associated with H* nilpotent orbits in the K* representation emerging from the orthogonal decomposition of the algebra U[D=3] with respect to H*. It is shown that the classification of such orbits can always be reduced to the Tits-Satake projection and it is a class property of the Tits Satake universality classes. The construction procedure of Bossard et al of extremal multicenter solutions by means of a triangular hierarchy of integrable equations is completed and converted into a closed algorithm by means of a general formula that provides the transition from the symmetric to the solvable gauge. The question of the relation between H* orbits and charge orbits W of the corresponding black holes is addressed and also reduced to the corresponding question within the Tits Satake projection. It is conjectured that on the vanishing locus of the Taub-NUT current the relation between H*-orbit and W-orbit is rigid and one-to-one. All black holes emerging from multicenter solutions associated with a given H* orbit have the same W-type. For the S^3 model we provide a complete survey of its multicenter solutions associated with all of the previously classified nilpotent orbits of sl(2) x sl(2) within g[2,2]. We find a new intrinsic classification of the W-orbits of this model that might provide a paradigm for the analogous classification in all the other Tits Satake universality classes.Comment: 83 pages, LaTeX; v2: few misprints corrected and references adde

    Black holes in supergravity and integrability

    Get PDF
    Stationary black holes of massless supergravity theories are described by certain geodesic curves on the target space that is obtained after dimensional reduction over time. When the target space is a symmetric coset space we make use of the group-theoretical structure to prove that the second order geodesic equations are integrable in the sense of Liouville, by explicitly constructing the correct amount of Hamiltonians in involution. This implies that the Hamilton-Jacobi formalism can be applied, which proves that all such black hole solutions, including non-extremal solutions, possess a description in terms of a (fake) superpotential. Furthermore, we improve the existing integration method by the construction of a Lax integration algorithm that integrates the second order equations in one step instead of the usual two step procedure. We illustrate this technology with a specific example.Comment: 44 pages, small typos correcte

    N=2 supergravity models with stable de Sitter vacua

    Get PDF
    In the present talk I shall review the construction of N=2 supergravity models exhibiting stable de Sitter vacua. These solutions represent the first instance of stable backgrounds with positive cosmological constant in the framework of extended supergravities (N >=2). After briefly reviewing the role of de Sitter space--times in inflationary cosmology, I shall describe the main ingredients which were necessary for the construction of gauged N=2 supergravity models admitting stable solutions of this kind.Comment: Prepared for Workshop on the Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions, Leuven, Belgium, September 13-19 200

    Stable de Sitter vacua in N=2, D=5 supergravity

    Full text link
    We find 5D gauged supergravity theories exhibiting stable de Sitter vacua. These are the first examples of stable de Sitter vacua in higher-dimensional (D>4) supergravity. Non-compact gaugings with tensor multiplets and R-symmetry gauging seem to be the essential ingredients in these models. They are however not sufficient to guarantee stable de Sitter vacua, as we show by investigating several other models. The qualitative behaviour of the potential also seems to depend crucially on the geometry of the scalar manifold.Comment: 26 pages, v2:typos corrected, published versio

    Tits-Satake projections of homogeneous special geometries

    Full text link
    We organize the homogeneous special geometries, describing as well the couplings of D=6, 5, 4 and 3 supergravities with 8 supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits-Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped in seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality classes both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.Comment: 65 pages, LaTeX; v2: added reference; v3: small corrections, section 3.3 modifie

    A Search for Non-Perturbative Dualities of Local N=2N=2 Yang--Mills Theories from Calabi--Yau Threefolds

    Get PDF
    The generalisation of the rigid special geometry of the vector multiplet quantum moduli space to the case of supergravity is discussed through the notion of a dynamical Calabi--Yau threefold. Duality symmetries of this manifold are connected with the analogous dualities associated with the dynamical Riemann surface of the rigid theory. N=2 rigid gauge theories are reviewed in a framework ready for comparison with the local case. As a byproduct we give in general the full duality group (quantum monodromy) for an arbitrary rigid SU(r+1)SU(r+1) gauge theory, extending previous explicit constructions for the r=1,2r=1,2 cases. In the coupling to gravity, R--symmetry and monodromy groups of the dynamical Riemann surface, whose structure we discuss in detail, are embedded into the symplectic duality group ΓD\Gamma_D associated with the moduli space of the dynamical Calabi--Yau threefold.Comment: Latex. Version of previous paper with enlarged and revised appendix 35 pages, plain LaTe

    Lectures on Gauged Supergravity and Flux Compactifications

    Get PDF
    The low-energy effective theories describing string compactifications in the presence of fluxes are so-called gauged supergravities: deformations of the standard abelian supergravity theories. The deformation parameters can be identified with the various possible (geometric and non-geometric) flux components. In these lecture notes we review the construction of gauged supergravities in a manifestly duality covariant way and illustrate the construction in several examples.Comment: 48 pages, lectures given at the RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, January 200
    corecore