544 research outputs found

    Spin-Orbital Entanglement and Violation of the Goodenough-Kanamori Rules

    Full text link
    We point out that large composite spin-orbital fluctuations in Mott insulators with t2gt_{2g} orbital degeneracy are a manifestation of quantum entanglement of spin and orbital variables. This results in a dynamical nature of the spin superexchange interactions, which fluctuate over positive and negative values, and leads to an apparent violation of the Goodenough-Kanamori rules. [{\it Published in Phys. Rev. Lett. {\bf 96}, 147205 (2006).}]Comment: 4 pages, 2 figure

    Making it real: exploring the potential of Augmented Reality for teaching primary school science

    Get PDF
    The use of Augmented Reality (AR) in formal education could prove a key component in future learning environments that are richly populated with a blend of hardware and software applications. However, relatively little is known about the potential of this technology to support teaching and learning with groups of young children in the classroom. Analysis of teacher-child dialogue in a comparative study between use of an AR virtual mirror interface and more traditional science teaching methods for 10-year-old children, revealed that the children using AR were less engaged than those using traditional resources. We suggest four design requirements that need to be considered if AR is to be successfully adopted into classroom practice. These requirements are: flexible content that teachers can adapt to the needs of their children, guided exploration so learning opportunities can be maximised, in a limited time, and attention to the needs of institutional and curricular requirements

    Suppression of static stripe formation by next-neighbor hopping

    Full text link
    We show from real-space Hartree-Fock calculations within the extended Hubbard model that next-nearest neighbor (t') hopping processes act to suppress the formation of static charge stripes. This result is confirmed by investigating the evolution of charge-inhomogeneous corral and stripe phases with increasing t' of both signs. We propose that large t' values in YBCO prevent static stripe formation, while anomalously small t' in LSCO provides an additional reason for the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure

    Damped orbital excitations in the titanates

    Full text link
    A possible mechanism for the removal of the orbital degeneracy in RTiO3 (where R=La, Y, ...) is considered. The calculation is based on the Kugel-Khomskii Hamiltonian for electrons residing in the t2g orbitals of the Ti ions, and uses a self-consistent pe rturbation expansion in the interaction between the orbital and the spin degrees of freedom. The latter are assumed to be ordered in a Neel state, brought about by delicate interactions that are not included in the Kugel-Khomskii Hamiltonian. Within our model calculations, each of the t2g bands is found to acquire a finite, temperature-dependent dispersion, that lifts the orbital degeneracy. The orbital excitations are found to be heavily damped over a rather wide band. Consequently, they do not participate as a separate branch of excitations in the low-temperature thermodynamics.eComment: 6 pages, 3 figure

    Elementary excitations of the symmetric spin-orbital model: The XY limit

    Full text link
    The elementary excitations of the 1D, symmetric, spin-orbital model are investigated by studying two anisotropic versions of the model, the pure XY and the dimerized XXZ case, with analytical and numerical methods. While they preserve the symmetry between spin and orbital degrees of freedom, these models allow for a simple and transparent picture of the low--lying excitations: In the pure XY case, a phase separation takes place between two phases with free--fermion like, gapless excitations, while in the dimerized case, the low-energy effective Hamiltonian reduces to the 1D Ising model with gapped excitations. In both cases, all the elementary excitations involve simultaneous flips of the spin and orbital degrees of freedom, a clear indication of the breakdown of the traditional mean-field theory.Comment: Revtex, two figure

    Orbital dynamics in ferromagnetic transition metal oxides

    Full text link
    We consider a model of strongly correlated ege_g electrons interacting by superexchange orbital interactions in the ferromagnetic phase of LaMnO3_3. It is found that the classical orbital order with alternating occupied ege_g orbitals has a full rotational symmetry at orbital degeneracy, and the excitation spectrum derived using the linear spin-wave theory is gapless. The quantum (fluctuation) corrections to the order parameter and to the ground state energy restore the cubic symmetry of the model. By applying a uniaxial pressure orbital degeneracy is lifted in a tetragonal field and one finds an orbital-flop phase with a gap in the excitation spectrum. In two dimensions the classical order is more robust near the orbital degeneracy point and quantum effects are suppressed. The orbital excitation spectra obtained using finite temperature diagonalization of two-dimensional clusters consist of a quasiparticle accompanied by satellite structures. The orbital waves found within the linear spin-wave theory provide an excellent description of the dominant pole of these spectra.Comment: 13 pages, 12 figures, to appear in Phys. Rev.

    Orbital and spin physics in LiNiO2 and NaNiO2

    Full text link
    We derive a spin-orbital Hamiltonian for a triangular lattice of e_g orbital degenerate (Ni^{3+}) transition metal ions interacting via 90 degree superexchange involving (O^{2-}) anions, taking into account the on-site Coulomb interactions on both the anions and the transition metal ions. The derived interactions in the spin-orbital model are strongly frustrated, with the strongest orbital interactions selecting different orbitals for pairs of Ni ions along the three different lattice directions. In the orbital ordered phase, favoured in mean field theory, the spin-orbital interaction can play an important role by breaking the U(1) symmetry generated by the much stronger orbital interaction and restoring the threefold symmetry of the lattice. As a result the effective magnetic exchange is non-uniform and includes both ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic interactions still dominate, this offers yet insufficient explanation for the absence of magnetic order and the low-temperature behaviour of the magnetic susceptibility of stoichiometric LiNiO_2. The scenario proposed to explain the observed difference in the physical properties of LiNiO_2 and NaNiO_2 includes small covalency of Ni-O-Li-O-Ni bonds inducing weaker interplane superexchange in LiNiO_2, insufficient to stabilize orbital long-range order in the presence of stronger intraplane competition between superexchange and Jahn-Teller coupling.Comment: 33 pages, 12 postscript figures, uses iopams.sty . This article features in New Journal of Physics as part of a Focus Issue on Orbital Physics - all contributions may be freely accessed at (http://stacks.iop.org/1367-2630/6/i=1/a=E05). The published version of this article may be found at http://stacks.iop.org/1367-2630/7/12

    Order from disorder: Quantum spin gap in magnon spectra of LaTiO_3

    Full text link
    A theory of the anisotropic superexchange and low energy spin excitations in a Mott insulator with t_{2g} orbital degeneracy is presented. We observe that the spin-orbit coupling induces frustrating Ising-like anisotropy terms in the spin Hamiltonian, which invalidate noninteracting spin wave theory. The frustration of classical states is resolved by an order from disorder mechanism, which selects a particular direction of the staggered moment and generates a quantum spin gap. The theory explains well the observed magnon gaps in LaTiO_3. As a test case, a specific prediction is made on the splitting of magnon branches at certain momentum directions.Comment: 5 pages, 2 figures, final versio

    Fishing regulations, sexual dimorphism, and the life history of harvest

    Get PDF
    Freshwater recreational fisheries regulations are a vital tool for achieving social and ecological fisheries objectives. However, angler behavior and fish biology may interact to influence regulation efficacy in unexpected ways. We combined models of fish growth and angler behavior to explore how angler behavior interacts with fish life history to shape the probability of fish harvest given capture across ages, life stages, and sexes of walleye (Sander vitreus). Compared to females, males grew more quickly as juveniles, matured earlier, and reached smaller maximum sizes. Male walleye were therefore vulnerable to harvest for more of their reproductive lives than females because males spent more time at sizes where anglers were very likely to harvest them. We suggest that restricting harvest of large individuals in sexually dimorphic species may favor the survival of large, reproductive-aged females. Moreover, we show that combining models of fish growth and harvester behavior can provide insights into how harvest affects fish with complex life histories over the course of their lives. La réglementation relative aux pêches sportives en eau douce constitue un outil d’importance capitale pour l’atteinte des objectifs sociaux et écologiques des pêches. Les interactions des comportements des pêcheurs et de la biologie des poissons peuvent toutefois influencer l’efficacité de la réglementation de manière imprévue. Nous combinons des modèles de croissance des poissons et de comportement des pêcheurs afin d’examiner l’effet de l’interaction du comportement des pêcheurs et du cycle biologique des poissons sur la probabilité de récolte de poissons au vu des prises selon l’âge, de l’étape du cycle de vie et du sexe de dorés jaunes (Sander vitreus). Comparativement aux femelles, les mâles croissent plus vite quand ils sont juvéniles, arrivent à maturité plus tôt et atteignent des tailles maximums plus petites. Les dorés mâles sont donc plus vulnérables à la récolte pour une plus grande partie de leur vie reproductive que les femelles parce qu’ils passent plus de temps à des tailles qui les rendent plus susceptibles d’être récoltés par les pêcheurs. Nous suggérons que le fait de restreindre la récolte aux grands individus pour des espèces qui présentent un dimorphisme sexuel pourrait favoriser la survie des grandes femelles en âge de reproduction. Nous démontrons en outre que le jumelage de modèles de croissance des poissons et de comportement des pêcheurs peut fournir de l’information utile sur l’effet de la récolte sur les poissons aux cycles biologiques complexes au fil de leur vie

    Just-In-Place Information for Mobile Device Interfaces

    Get PDF
    Abstract. This paper addresses the potentials of context sensitivity for making mobile device interfaces less complex and easier to interact with. Based on a semiotic approach to information representation, it is argued that the design of mobile device interfaces can benefit from spatial and temporal indexicality, reducing information complexity and interaction space of the device while focusing on information and functionality relevant here and now. Illustrating this approach, a series of design sketches show the possible redesign of an existing web and wap-based information service.
    • …
    corecore