20 research outputs found
Economics-Based Optimization of Unstable Flows
As an example for the optimization of unstable flows, we present an
economics-based method for deciding the optimal rates at which vehicles are
allowed to enter a highway. It exploits the naturally occuring fluctuations of
traffic flow and is flexible enough to adapt in real time to the transient flow
characteristics of road traffic. Simulations based on realistic parameter
values show that this strategy is feasible for naturally occurring traffic, and
that even far from optimality, injection policies can improve traffic flow.
Moreover, the same method can be applied to the optimization of flows of gases
and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397).
For related work see http://www.parc.xerox.com/dynamics/ and
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Traffic flow on realistic road networks with adaptive traffic lights
We present a model of traffic flow on generic urban road networks based on
cellular automata. We apply this model to an existing road network in the
Australian city of Melbourne, using empirical data as input. For comparison, we
also apply this model to a square-grid network using hypothetical input data.
On both networks we compare the effects of non-adaptive vs adaptive traffic
lights, in which instantaneous traffic state information feeds back into the
traffic signal schedule. We observe that not only do adaptive traffic lights
result in better averages of network observables, they also lead to
significantly smaller fluctuations in these observables. We furthermore compare
two different systems of adaptive traffic signals, one which is informed by the
traffic state on both upstream and downstream links, and one which is informed
by upstream links only. We find that, in general, both the mean and the
fluctuation of the travel time are smallest when using the joint
upstream-downstream control strategy.Comment: 41 pages, pdflate
Coherent Moving States in Highway Traffic (Originally: Moving Like a Solid Block)
Recent advances in multiagent simulations have made possible the study of
realistic traffic patterns and allow to test theories based on driver
behaviour. Such simulations also display various empirical features of traffic
flows, and are used to design traffic controls that maximise the throughput of
vehicles in heavily transited highways. In addition to its intrinsic economic
value, vehicular traffic is of interest because it may throw light on some
social phenomena where diverse individuals competitively try to maximise their
own utilities under certain constraints.
In this paper, we present simulation results that point to the existence of
cooperative, coherent states arising from competitive interactions that lead to
a new phenomenon in heterogeneous highway traffic. As the density of vehicles
increases, their interactions cause a transition into a highly correlated state
in which all vehicles practically move with the same speed, analogous to the
motion of a solid block. This state is associated with a reduced lane changing
rate and a safe, high and stable flow. It disappears as the vehicle density
exceeds a critical value. The effect is observed in recent evaluations of Dutch
traffic data.Comment: Submitted on April 21, 1998. For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.parc.xerox.com/dynamics
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
Optimised Traffic Flow at a Single Intersection: Traffic Responsive signalisation
We propose a stochastic model for the intersection of two urban streets. The
vehicular traffic at the intersection is controlled by a set of traffic lights
which can be operated subject to fix-time as well as traffic adaptive schemes.
Vehicular dynamics is simulated within the framework of the probabilistic
cellular automata and the delay experienced by the traffic at each individual
street is evaluated for specified time intervals. Minimising the total delay of
both streets gives rise to the optimum signalisation of traffic lights. We
propose some traffic responsive signalisation algorithms which are based on the
concept of cut-off queue length and cut-off density.Comment: 10 pages, 11 eps figs, to appear in J. Phys.
Intelligent Controlling Simulation of Traffic Flow in a Small City Network
We propose a two dimensional probabilistic cellular automata for the
description of traffic flow in a small city network composed of two
intersections. The traffic in the network is controlled by a set of traffic
lights which can be operated both in fixed-time and a traffic responsive
manner. Vehicular dynamics is simulated and the total delay experienced by the
traffic is evaluated within specified time intervals. We investigate both
decentralized and centralized traffic responsive schemes and in particular
discuss the implementation of the {\it green-wave} strategy. Our investigations
prove that the network delay strongly depends on the signalisation strategy. We
show that in some traffic conditions, the application of the green-wave scheme
may destructively lead to the increment of the global delay.Comment: 8 pages, 10 eps figures, Revte
Defects in Meiotic Recombination Delay Progression Through Pachytene in Tex19.1-/- Mouse Spermatocytes
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13 mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1 −/− . The appearance of early recombination foci is delayed in Tex19.1 −/− spermatocytes during leptotene/zygotene, but some Tex19.1 −/− spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1 −/− spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1 −/− testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect
Living in Living Cities
This paper presents an overview of current and potential applications of
living technology to some urban problems. Living technology can be described as
technology that exhibits the core features of living systems. These features
can be useful to solve dynamic problems. In particular, urban problems
concerning mobility, logistics, telecommunications, governance, safety,
sustainability, and society and culture are presented, while solutions
involving living technology are reviewed. A methodology for developing living
technology is mentioned, while supraoptimal public transportation systems are
used as a case study to illustrate the benefits of urban living technology.
Finally, the usefulness of describing cities as living systems is discussed.Comment: 40 pages, 4 figures, overview pape
