1,631,848 research outputs found
An Enhanced Perturbational Study on Spectral Properties of the Anderson Model
The infinite- single impurity Anderson model for rare earth alloys is
examined with a new set of self-consistent coupled integral equations, which
can be embedded in the large expansion scheme ( is the local spin
degeneracy). The finite temperature impurity density of states (DOS) and the
spin-fluctuation spectra are calculated exactly up to the order . The
presented conserving approximation goes well beyond the -approximation
({\em NCA}) and maintains local Fermi-liquid properties down to very low
temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in
the impurity DOS is in accordance with Friedel's sum rule. For its shift
toward the chemical potential, compared to the {\em NCA}, can be traced back to
the influence of the vertex corrections. The width and height of the ASR is
governed by the universal low temperature energy scale . Temperature and
degeneracy -dependence of the static magnetic susceptibility is found in
excellent agreement with the Bethe-Ansatz results. Threshold exponents of the
local propagators are discussed. Resonant level regime () and intermediate
valence regime () of the model are thoroughly
investigated as a critical test of the quality of the approximation. Some
applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the
WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof
Replacing of glass fibres with seed oil palm fibres for tribopolymeric composites
In the current study, the possibility of replacing woven glass fibres (WGFs) with seed oil palm fibres (SOPFs) as reinforcements for tribopolymeric composites is investigated. Mainly, two different polyester composites based on woven glass reinforced polyester (WGRP) and seed oil palm reinforced polyester (SOPRP) are developed. Different volume fractions (25, 35, and 45 vol.- %) of SOPFs were considered. The experiments were performed using a block on disc (BOD) machine and the tests were conducted under dry contact condition against smooth stainless steel
counterface at 2?8 m s21 sliding velocity, 20 N applied load for different sliding distances (up to
5 km). The wear mechanism was categorised using a Scanning Electron Microscope (SEM). The
results revealed that the steady state was reached after 4 km sliding distance for both WGRP and SOPRP composites. Seed oil palm reinforced polyester composites showed very high friction coefficient compared to WGRP. 35 vol.-% SOPRP composite exhibited a promising wear result, i.e. SOPFs are possible to replace WGFs in polymeric composites reinforcements whereas the wear resistance of the synthetic and natural composite were almost the same. The wear mechanisms for SOPRP composites were predominated by microcracks, deformation and pulled out of fibres while in the WGRP composite, abrasive nature was observed
Electron spin dynamics and electron spin resonance in graphene
A theory of spin relaxation in graphene including intrinsic, Bychkov-Rashba,
and ripple spin-orbit coupling is presented. We find from spin relaxation data
by Tombros et al. [Nature 448, 571 (2007).] that intrinsic spin-orbit coupling
dominates over other contributions with a coupling constant of 3.7 meV.
Although it is 1-3 orders of magnitude larger than those obtained from first
principles, we show that comparable values are found for other honeycomb
systems, MgB2 and LiC6; the latter is studied herein by electron spin resonance
(ESR). We predict that spin coherence is longer preserved for spins
perpendicular to the graphene plane, which is beneficial for spintronics. We
identify experimental conditions when bulk ESR is realizable on graphene
Magnetohydrodynamic Turbulent Cascade of Coronal Loop Magnetic Fields
The Parker model for coronal heating is investigated through a high
resolution simulation. An inertial range is resolved where fluctuating magnetic
energy E_M (k_perp) \propto k_\perp^{-2.7} exceeds kinetic energy E_K (k_\perp)
\propto k_\perp^{-0.6}. Increments scale as \delta b_\ell \simeq \ell^{-0.85}
and \delta u_\ell \simeq \ell^{+0.2} with velocity increasing at small scales,
indicating that magnetic reconnection plays a prime role in this turbulent
system. We show that spectral energy transport is akin to standard
magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current
sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic
energy flows are negligible while cross-field flows are enhanced, and through a
series of "reflections" between the two fields, cascade more than half of the
total spectral energy flow.Comment: 5 pages, 5 figures, to appear in Physical Review E - Rapid. Com
- ā¦