70 research outputs found
Control leukemia by inducing anti-cancer immune reactivity in vivo? Potential of a dc-triggered mechanism [Poster]
Rapid and sustained T cell-based immunotherapy against invasive fungal disease via a combined two step procedure
IntroductionAspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. MethodsTo facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-gamma) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). ResultsFor the fast CSA-based approach we detected IFN-gamma(+) ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4(+) helper T cells with a central-memory phenotype were expanded while CD8(+) T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-gamma. DiscussionFor patients with IA, the immediate adoptive transfer of IFN-gamma(+) ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.Transplantation and immunomodulatio
Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors
BACKGROUND: Adoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications. METHODS: We provide results of a personalized T-cell manufacturing program evaluating donor, patient, T-cell product and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T-lymphocyte (EBV-CTL) products from stem cell donors (SCD), related third party donors (TPD) or unrelated TPD from the allogeneic T-cell donor registry (alloCELL) established at Hannover Medical School were manufactured by immunomagnetic selection using CliniMACS Plus or Prodigy device and EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated and patient outcome and side effects were retrieved by retrospective chart analysis. RESULTS: Forty clinical-grade EBV-CTL products from SCDs, related or unrelated TPDs were generated for 37 patients with and without transplantation (Tx) history within 5 days (median) after donor identification. 34 patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16/18 monitored patients (89 %) after transfer and correlated with clinical response. CONCLUSION: In conclusion, personalized clinical-grade manufacturing of EBV-CTL products via immunomagnetic selection from SCD, related or unrelated TPD is feasible in a timely manner. Overall, EBV-CTL were clinically effective and well-tolerated. Our data suggest EBV-CTL as promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT as well as patients with pre-existing organ dysfunction
The predicted protein structures of the novel DRB1*0717 and DRB1*0701 are highly related
Third-Party-T-Zell-Spender: eine alternative Quelle virusspezifischer T-Zellen für die adoptive Immuntherapie
- …
