39 research outputs found

    Depression Treatment Decreases Healthcare Expenditures Among Working Age Patients With Comorbid Conditions and Type 2 Diabetes Mellitus Along With Newly-Diagnosed Depression

    Get PDF
    Background: There are many studies in the literature on the association between depression treatment and health expenditures. However, there is a knowledge gap in examining this relationship taking into account coexisting chronic conditions among patients with diabetes. We aim to analyze the association between depression treatment and healthcare expenditures among adults with Type 2 Diabetes Mellitus (T2DM) and newly-diagnosed depression, with consideration of coexisting chronic physical conditions. Methods: We used multi-state Medicaid data (2000–2008) and adopted a retrospective longitudinal cohort design. Medical conditions were identified using diagnosis codes (ICD-9-CM and CPT systems). Healthcare expenditures were aggregated for each month for 12 months. Types of coexisting chronic physical conditions were hierarchically grouped into: dominant, concordant, discordant, and both concordant and discordant. Depression treatment categories were as follows: antidepressants or psychotherapy, both antidepressants and psychotherapy, and no treatment. We used linear mixed-effects models on log-transformed expenditures (total and T2DM-related) to examine the relationship between depression treatment and health expenditures. The analyses were conducted on the overall study population and also on subgroups that had coexisting chronic physical conditions. Results: Total healthcare expenditures were reduced by treatment with antidepressants (16 % reduction), psychotherapy (22 %), and both therapy types in combination (28 %) compared to no depression treatment. Treatment with both antidepressants and psychotherapy was associated with reductions in total healthcare expenditures among all groups that had a coexisting chronic physical condition. Conclusions: Among adults with T2DM and chronic conditions, treatment with both antidepressants and psychotherapy may result in economic benefits

    Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008

    Get PDF
    Background: Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. Objective: The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. Methods: An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA® 10. Results: Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. Conclusion: The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities

    Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence

    Get PDF
    The adaptation of Chikungunya virus (CHIKV) to a new vector, the Aedes albopictus mosquito, is a major factor contributing to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004. Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe and expanded CHIK epidemics

    Low levels of anti TB drug resistance in Rayagada district of Odisha, India

    Get PDF
    A study was conducted at Rayagada district of Odisha, India, among smear-positive tuberculosis (TB) patients to determine the resistance pattern to first-line drugs. Sputum samples were collected from 405 new and 37 previously treated patients and were tested at Regional Medical Research Centre, Bhubaneswar. Resistance to any anti-tubercular drug was observed to be 5.2% among new cases and 16.1% among previously treated patients, while multidrug-resistant tuberculosis (MDR-TB) was found to be 0% in new and 8.1% in previously treated cases. Such a low level of resistance may be due to the limited use of TB drugs outside the ongoing program

    A spectrum of viral diseases in Odisha state, eastern India: An evidence-based analysis from 2010–2017

    No full text
    Introduction: Emerging and re-emerging viral diseases are a major threat to public health. Odisha, being one of the coastal states in the country, reports many viral illnesses due to its typical geographical location. This study focuses on the prevalence of different viral diseases in the state of Odisha, India, from 2010–2017. Material and Methods: A total of 43,397 patients with clinical suspicion of viral diseases were screened for different viral etiologies during 2010–2017. The laboratory diagnosis was conducted by serology (ELISA) and RT-PCR for 24 different viruses, i.e., dengue, chikungunya, Japanese encephalitis, hepatitis A virus, hepatitis E virus, hepatitis B virus, hepatitis C virus, rotavirus, herpes simplex virus-1 and herpes simplex virus-2, Epstein-Barr virus, cytomegalovirus, and respiratory viruses. Patients were enrolled from sporadic hospital admissions and outbreaks under different categories as per clinical diagnoses like fever with rash, diarrhoea, encephalitis, jaundice, respiratory illness, and fever of unknown etiology. Results: The majority of patients belonged to exanthematous group, i.e., fever with rash (32.24%). The number of males was more in all categories except fever with rash, where females (53.34%) were more. Children <16 years of age were found to be the predominant age group for suspected viral diarrhoea (85.26%), encephalitis (76.96%), fever of unknown origin (40.16%), and respiratory infections (27.23%). Conclusion: Not only vector-borne diseases pose a threat to the Odisha state, but other viral illnesses have also emerged. This detailed report of different viral diseases in the state of Odisha will support public health management

    Na2.32Co1.84(SO4)(3) as a new member of the alluaudite family of high-voltage sodium battery cathodes

    No full text
    Electrochemical energy storage has recently seen tremendous emphasis being placed on the large-scale (power) grid storage. Sodium-ion batteries are capable of achieving this goal with economic viability. In a recent breakthrough in sodium-ion battery research, the alluaudite framework (Na2Fe2(SO4)(3)) has been reported, with the highest Fe3+/Fe2+ redox potential (ca. 3.8 V, Barpanda, et al., Nat. Commun., 2014, 5, 4358). Exploring this high-voltage sodium insertion system, we report the discovery of Na2+2xCo2-x(SO4)(3) (x = 0.16) as a new member of the alluaudite class of cathode. Stabilized by low-temperature solid-state synthesis (T <= 350 degrees C),this novel Co-based compound assumes a monoclinic structure with C2/c symmetry, which undergoes antiferromagnetic ordering below 10.2 K. Isotypical to the Fe-homologue, it forms a complete family of solid-solution Na2+2x(Fe1-yCoy)(2-x)(SO4)(3) y = 0-1]. Ab initio DFT analysis hints at potential high voltage operation at 4.76-5.76 V (vs. Na), depending on the degree of desodiation involving a strong participation of the oxygen sub-lattice. With the development of safe organic electrolytes, Na2+2xCo2-x(SO4)(3) can work as a cathode material (similar to 5 V) for sodium-ion batteries

    Na2.44Mn1.79(SO4)(3): a new member of the alluaudite family of insertion compounds for sodium ion batteries

    No full text
    Sodium-ion batteries have been extensively pursued as economic alternatives to lithium-ion batteries. Investigating the polyanion chemistry, alluaudite structured Na2Fe2II(SO4)(3) has been recently discovered as a 3.8 V positive electrode material (Barpanda et al., Nature Commun., 5: 4358, 2014). Registering the highest ever Fe-III/Fe-II redox potential (vs. Na/Na+) and formidable energy density, it has opened up a new polyanion family for sodium batteries. Exploring the alluaudite family, here we report isotypical Na2+2xMn2-xII(SO4)(3) (x = 0.22) as a novel high-voltage cathode material for the first time. Following low-temperature (ca. 350 degrees C) solid-state synthesis, the structure of this new alluaudite compound has been solved adopting a monoclinic framework (s.g. C2/c) showing antiferromagnetic ordering at 3.4 K. Synergising experimental and ab initio DFT investigation, Na2+2xMn2-xII(SO4)(3) has been found to be a potential high-voltage (ca. 4.4 V) cathode material for sodium batteries

    Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)(3) Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights

    No full text
    Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described
    corecore