2,807 research outputs found

    The Instability Transition for the Restricted 3-Body Problem. III. The Lyapunov Exponent Criterion

    Full text link
    We establish a criterion for the stability of planetary orbits in stellar binary systems by using Lyapunov exponents and power spectra for the special case of the circular restricted 3-body problem (CR3BP). The centerpiece of our method is the concept of Lyapunov exponents, which are incorporated into the analysis of orbital stability by integrating the Jacobian of the CR3BP and orthogonalizing the tangent vectors via a well-established algorithm originally developed by Wolf et al. The criterion for orbital stability based on the Lyapunov exponents is independently verified by using power spectra. The obtained results are compared to results presented in the two previous papers of this series. It is shown that the maximum Lyapunov exponent can be used as an indicator for chaotic behaviour of planetary orbits, which is consistent with previous applications of this method, particularly studies for the Solar System. The chaotic behaviour corresponds to either orbital stability or instability, and it depends solely on the mass ratio of the binary components and the initial distance ratio of the planet relative to the stellar separation distance. Our theoretical results allow us to link the study of planetary orbital stability to chaos theory noting that there is a large array of literature on the properties and significance of Lyapunov exponents. Although our results are given for the special case of the CR3BP, we expect that it may be possible to augment the proposed Lyapunov exponent criterion to studies of planets in generalized stellar binary systems, which is strongly motivated by existing observational results as well as results expected from ongoing and future planet search missions.Comment: 10 pages, 8 figures, 3 tables; accepted by Astronomy and Astrophysic

    Where are the Uranus Trojans?

    Full text link
    The area of stable motion for fictitious Trojan asteroids around Uranus' equilateral equilibrium points is investigated with respect to the inclination of the asteroid's orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L4 and L5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 billion years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 < a < 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids' orbit was varied in the range 0 < i < 60 and the semimajor axes were fixed. It turned out that only four 'windows' of stable orbits survive: these are the orbits for the initial inclinations 0 < i < 7, 9 < i < 13, 31 < i < 36 and 38 < i < 50. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.Comment: 15 pages, 12 figures, submitted to CMD

    A simple mechanistic model of sprout spacing in tumour-associated angiogenesis

    Get PDF
    This paper develops a simple mathematical model of the siting of capillary sprouts on an existing blood vessel during the initiation of tumour-induced angiogenesis. The model represents an inceptive attempt to address the question of how unchecked sprouting of the parent vessel is avoided at the initiation of angiogenesis, based on the idea that feedback regulation processes play the dominant role. No chemical interaction between the proangiogenic and antiangiogenic factors is assumed. The model is based on corneal pocket experiments, and provides a mathematical analysis of the initial spacing of angiogenic sprouts

    Planets in habitable zones: A study of the binary Gamma Cephei

    Full text link
    The recently discovered planetary system in the binary GamCep was studied concerning its dynamical evolution. We confirm that the orbital parameters found by the observers are in a stable configuration. The primary aim of this study was to find stable planetary orbits in a habitable region in this system, which consists of a double star (a=21.36 AU) and a relatively close (a=2.15 AU) massive (1.7 Mjup sin i) planet. We did straightforward numerical integrations of the equations of motion in different dynamical models and determined the stability regions for a fictitious massless planet in the interval of the semimajor axis 0.5 AU < a < 1.85 AU around the more massive primary. To confirm the results we used the Fast Lyapunov Indicators (FLI) in separate computations, which are a common tool for determining the chaoticity of an orbit. Both results are in good agreement and unveiled a small island of stable motions close to 1 AU up to an inclination of about 15 deg (which corresponds to the 3:1 mean motion resonance between the two planets). Additionally we computed the orbits of earthlike planets (up to 90 earthmasses) in the small stable island and found out, that there exists a small window of stable orbits on the inner edge of the habitable zone in GamCep even for massive planets.Comment: 4 pages, 5 figures, changed 2 references made minor changes due to referees advic
    corecore