317 research outputs found

    Dissipative dynamics of a kink state in a Bose-condensed gas

    Full text link
    We develop a theory of dissipative dynamics of a kink state in a finite-temperature Bose-condensed gas. We find that due to the interaction with the thermal cloud the kink state accelerates towards the velocity of sound and continuously transforms to the ground-state condensate. We calculate the life-time of a kink state in a trapped gas and discuss possible experimental implications.Comment: 4 pages, RevTe

    Impact of farmer producer organization on organic chilli production in Telangana, India

    Get PDF
    Input intensive modern agriculture is adversely affecting human health and environment. Farmers of Telangana state have taken up organic chilli production with the assistance of FPOs. Primary data was collected from 120 farmers comprising 60 members and 60 non-members of FPO from two districts of Telangana through semi-structured interviews. The study found that the shift to organic chilli cultivation led to decrease in input use by 9.06% and yield by 23.4%. However, the gross return from organic chilli farming was 13.85% higher over that realised by non-members due to the efforts of FPOs. DEA analysis revealed that a higher proportion of member farmers (48%) had technical efficiency of more than 60% as compared to non-members (18%). FPOs were instrumental in reduction of transaction cost and number of intermediaries leading to the realization of a higher proportion of producer’s share in consumer’s rupee (65%). Discriminant function analysis revealed that the FPO promoting institutions (44%), ease of doing business (16%) and infrastructure facilities like storage, irrigation, electricity and credit have high influence on performance of the states with respect to FPOs

    Dynamical Cooling of Trapped Gases I: One Atom Problem

    Full text link
    We study the laser cooling of one atom in an harmonic trap beyond the Lamb-Dicke regime. By using sequences of laser pulses of different detunings we show that the atom can be confined into just one state of the trap, either the ground state or an excited state of the harmonic potential. The last can be achieved because under certain conditions an excited state becomes a dark state. We study the problem in one and two dimensions. For the latter case a new cooling mechanism is possible, based on the destructive interference between the effects of laser fields in different directions, which allows the creation of variety of dark states. For both, one and two dimensional cases, Monte Carlo simulations of the cooling dynamics are presented.Comment: LaTeX file with 8 pages, 7 eps figures. Submitted to Phys. Rev.

    Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence

    Full text link
    The fundamental problem of Farley-Buneman turbulence in the auroral EE-region has been discussed and debated extensively in the past two decades. In the present paper we intend to clarify the different steps that the auroral EE-region plasma has to undergo before reaching a steady state. The mode-coupling calculation, for Farley-Buneman turbulence, is developed in order to place it in perspective and to estimate its magnitude relative to the anomalous effects which arise through the nonlinear wave-particle interaction. This nonlinear effect, known as nonlinear ``Landau damping'' is due to the coupling of waves which produces other waves which in turn lose energy to the bulk of the particles by Landau damping. This leads to a decay of the wave energy and consequently a heating of the plasma. An equation governing the evolution of the field spectrum is derived and a physical interpration for each of its terms is provided

    Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference

    Full text link
    A phase-slip in the fringes of an interference pattern is an unmistakable characteristic of vorticity. We show dramatic two-dimensional simulations of interference between expanding condensate clouds with and without vorticity. In this way, vortices may be detected even when the core itself cannot be resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure

    Cat States and Single Runs for the Damped Harmonic Oscillator

    Full text link
    We discuss the fate of initial states of the cat type for the damped harmonic oscillator, mostly employing a linear version of the stochastic Schr\"odinger equation. We also comment on how such cat states might be prepared and on the relation of single realizations of the noise to single runs of experiments.Comment: 18, Revte

    Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates

    Full text link
    We propose a method for generating and controlling a spatially separated vortex--antivortex pair in a Bose-Einstein condensate trapped in a toroidal potential. Our simulations of the time dependent Gross-Pitaevskii equation show that in toroidal condensates vortex dynamics are different from the dynamics in the homogeneous case. Our numerical results agree well with analytical calculations using the image method. Our proposal offers an effective example of coherent generation and control of vortex dynamics in atomic condensates.Comment: 4 pages, 2 figure

    Vortices in a Bose-Einstein Condensate

    Full text link
    We have created vortices in two-component Bose-Einstein condensates. The vortex state was created through a coherent process involving the spatial and temporal control of interconversion between the two components. Using an interference technique, we map the phase of the vortex state to confirm that it possesses angular momentum. We can create vortices in either of the two components and have observed differences in the dynamics and stability.Comment: 4 pages with 3 figure

    Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice

    Get PDF
    The qualitative nature (i.e. integrable vs. chaotic) of the translational dynamics of a three-level atom in an optical lattice is shown to be controllable by varying the relative laser phase of two standing wave lasers. Control is explained in terms of the nonadiabatic transition between optical potentials and the corresponding regular to chaotic transition in mixed classical-quantum dynamics. The results are of interest to both areas of coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter

    Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates

    Full text link
    Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wavepackets, which share some exceptional generic features like form-stability and particle-like properties. Ultra-cold quantum gases represent very pure and well-controlled non-linear systems, therefore offering unique possibilities to study soliton dynamics. Here we report on the first observation of long-lived dark and dark-bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87^{87}Rb Bose-Einstein condensates. In particular, our detailed studies of dark and dark-bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure
    • 

    corecore