7,426 research outputs found

    Superscaling in electron- and neutrino-nucleus scattering

    Full text link
    The superscaling properties of electron scattering data are used to extract model-independent predictions for neutrino-nucleus cross sections.Comment: Contibution to NuInt05, 4th international workshop on neutrino-nucleus interaction in the few GeV region, Sept. 26 - 29 2005, Okayama, Japa

    Surface heat transfer due to sliding bubble motion

    Get PDF
    International audienc

    Scale Separation Scheme for Simulating Superfluid Turbulence: Kelvin-Wave Cascade

    Get PDF
    A Kolmogorov-type cascade of Kelvin waves--the distortion waves on vortex lines--plays a key part in the relaxation of superfluid turbulence at low temperatures. We propose an efficient numeric scheme for simulating the Kelvin wave cascade on a single vortex line. The idea is likely to be generalizable for a full-scale simulation of different regimes of superfluid turbulence. With the new scheme, we are able to unambiguously resolve the cascade spectrum exponent, and thus to settle the controversy between recent simulations [1] and recently developed analytic theory [2]. [1] W.F. Vinen, M. Tsubota and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003). [2] E.V. Kozik and B.V. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).Comment: 4 pages, RevTe

    A simple model for NN correlations in quasielastic lepton-nucleus scattering

    Get PDF
    We present a covariant extension of the relativistic Fermi gas model which incorporates correlation effects in nuclei. Within this model, inspired by the BCS descriptions of systems of fermions, we obtain the nuclear spectral function and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.Comment: 11 pages, 6 figures, Proceedings of the Twenty Seventh International Workshop on Nuclear Theory, June 23 - 28, 2008, Rila mountains, Bulgari

    Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation

    Get PDF
    We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was provided by the ACT Government as part of an Australian Research Council Linkage Grant (LP0561817; LP110100126). Drafts of the manuscript were read by Saul Cunningham and Ben Macdonald
    • …
    corecore